

Geological Society of America 2015

LARGE SCALE CONVECTIVE CIRCULATION IN THE LAKE CHAD BASIN.

Teodolina Lopez

With the contributions of: R. Antoine, Y. Kerr, J. Darrozes, M. Rabinowicz, G. Ramillien, P. Genthon, A. Cazenave

LAKE CHAD BASIN

Phreatic Quaternary aquifer (QPA):

- characterised by closed piezometric domes and depressions.
- aquifer depth: ~10 m and ~60 m, respectively.

MAIN HYPOTHESIS

Excess losses by evapotranspiration above the depressions (Aranyossy and Ndiaye, 1993).

INFLUENCE OF THE GEOLOGY

Free air (FA) gravity data map of the lake Chad basin (EGM 2012):

Correlation between the location of the piezometric anomalies and the limits of the basin.

INFLUENCE OF THE SEDIMENTOLOGY

At large-scale: - depression located above thin sequence, - dome located above thick sequence.

THERMO-CONVECTION

Four aquifers in the basin:

- Phreatic Quaternary aquifer,
- Pliocene aquifer,
- Continental Terminal aquifer,
- Continental Hammadian aquifer.

Hypothesis : Depressions and domes are the consequence of a thermally driven convection in the aquifers.

PROBABLE VERTICAL PERMEABILITY FIELD

Presence of normal faults

Modified from Pouclet et al, 1983

Kadzell depression

Presence of drains with a hydraulic conductivity of 7 10⁻³ m s⁻¹.

Kanem dome

Layer of sand with an isotropic permeability between 10⁻¹¹ to 10⁻¹⁰ m².

VERTICAL PERMEABILITY THROUGH CLAYS

Artesian springs of Pliocene aquifer > clay-rich formation is fractured.

2D CONVECTIVE MODEL

Large-scale slope of the conductive isotherms: convection is triggered whatever the Rayleigh number.

2D CONVECTIVE MODEL

Vigour of the convection within the stratified porous media is characterised by the vertical Rayleigh number:

$$Ra = \frac{\alpha \rho g C_L K_Z}{\mu \lambda_{eq}} \gamma h^2$$

Snapshot of the convective field after ~500,000 yrs.

2D CONVECTIVE MODEL

$$Ra = \frac{\alpha \rho g C_L K_Z}{\mu \lambda_{eq}} \gamma h^2 < \sim 40$$

Formation of a basin-wide convective cell.

VELOCITY OF THE CONVECTION

Fluid velocity field $\vec{u} = (U_x, V_z)$ describe by the Darcy's law:

$$\vec{u} = -\frac{K}{\mu} \Big(\overrightarrow{\nabla p} - \rho \vec{g} \Big)$$

Vertical velocity

- descending current: 4 mm yr⁻¹
- ascending current: 4 cm yr⁻¹

Horizontal velocity

- bottom current:10 cm yr⁻¹
- 7 cm yr⁻¹ < top current < 39 cm yr⁻¹

THERMAL PROFILES

Kadzell

descending current

Kanem

Thermal profile typical of an ascending current

12/16

THERMAL PROFILES FROM OIL WELL

At first order:

- Bornu depression associated with a cold descending current,
- Presence of a warm ascending current.

WATER TABLE TOPOGRAPHY

The water table derived from the convective model reproduces the observed water table.

GEOCHEMISTRY

- Phreatic Quaternary aquifer > $CaHCO_3$ waters.
- Pliocene aquifer > $NaSO_4$ waters.
- Continental Terminal aquifer > NaHCO₃ waters.
- Continental Hammadian aquifer > NaCl waters.

Total Dissolved Solid: 164 mg L⁻¹

760 mg L⁻¹

15/16

Apparent absence of a notable vertical stratification of salinity > basin-wide circulation may be only driven by thermal gradients.

Variations of water chemistry:

- Anion exchanges,
- Presence of sulphate-reducing bacteria.

CONCLUSION

- The phreatic Quaternary aquifer (QPA) of the Lake Chad basin presents piezometric anomalies; correlated with the sedimentology of the basin (depressions are associated with thin sedimentary sequence).
- The lack of gradient vertical salinity and the presence of vertical permeability permit the development of a basin-wide thermally driven convective circulation.
- The variation of chemistry between aquifers can be explained by two processes in clay-rich deposits:
 - Anion exchanges,
 - Sulphate-reducing bacteria.

Our convective model predicts the water table topography of the QPA:

- Depressions are associated to a cold descending current,
- Domes are associated to a warm ascending current.

THANKS FOR YOU ATTENTION

