The influence of sandstone caprock material on channel steepness in the Buffalo National River Basin, AR

Evan Thaler
Matthew Covington
University of Arkansas
Buffalo National River Basin
Ozark and Boston Mountains Region
• Uplift coincident with Ouachita-Appalachian orogeny
 • Tectonically inactive
• Series of uplifted and dissected plateaus
• Gently dipping Ordovician to Pennsylvanian strata
• Integral method of channel profile analysis & chi gradients
 • Perron and Royden (2013)

• Quantify channel steepness with effect of basin area removed using chi gradients

• Analysis was done using LSDTopoToolbox
 • Calculates chi gradient and drainage area at evenly spaced nodes along channel
 • Concavity is 0.45
 • Basins below $10^{5.7} \text{m}^2$ were trimmed

Where

$$m_{\chi} = \left(\frac{U}{K A_0^{m}} \right)^{1/n}$$

$$\chi = \int_{x_0}^{x} \left(\frac{A_0}{A(x)} \right)^{m/n} \text{d}x$$
Map of chi gradient values

Log Chi slope
-3.568 - -0.9225
-0.9224 - -0.4420
-0.4419 - -0.1045
-0.1044 - 0.2179
0.2180 - 0.8779

Geologic unit
- Pennsylvania Sandstones
- Mississippian Fayetteville, Pitkin, Batesville
- Mississippian Boone
- Ordovician Everton
Highest chi gradients in tributary channels below sandstone caprock
Even high chi gradients in channels beneath sandstone islands

log Chi slope
-3.568 - -0.9225
-0.9224 - -0.4420

Geologic unit
-0.4419 - -0.1045
-0.1044 - 0.2179
0.2180 - 0.8779

- Pennsylvanian Sandstones
- Mississippian Fayetteville, Pitkin, Batesville
- Mississippian Boone
- Ordovician Everton
Lowest chi gradients in tributary channels where caprock is absent
Lowest chi gradients in tributary channels where caprock is absent
Segmentation of channels to avoid serial correlation

- Each channel is divided into reaches separates by junctions
- Further subdivided into lithologic reaches
- Node chi gradient values were averaged for each lithologic reach
 - Each reach is represented by a single chi gradient value
- Data showed no serial correlation
- Nemenyi multicomparison test was used to determine if different lithologies have systematic differences in chi gradient
Segmentation of channels to avoid serial correlation

- Each channel is divided into reaches separated by junctions
- Further subdivided into lithologic reaches
- Node chi gradient values were averaged for each lithologic reach
 - Each reach is represented by a single chi gradient value
- Data showed no serial correlation
- Nemenyi multicomparison test was used to determine if different lithologies have systematic differences in chi gradient
Segmentation of channels to avoid serial correlation

- Each channel is divided into reaches separates by junctions
- Further subdivided into lithologic reaches
- Node chi gradient values were averaged for each lithologic reach
 - Each reach is represented by a single chi gradient value
- Data showed no serial correlation
- Nemenyi multicomparison test was used to determine if different lithologies have systematic differences in chi gradient
• Lithology is not the dominant control on channel steepness despite strong contrast in rock properties

• Chi gradients are statistically distinct between capped and uncapped basins
Boulders from Bloyd Fm, the dominant caprock in the basin
• Boone reach has multiple landslides and some large sandstone boulders in channel

• Minimal Influence of sandstone caprock on reaches in Everton Fm
In the Buffalo Basin:

- No constraints on erosion rates or erodibility values

- Can still use ratios of chi gradients to get relative erosion rates or relative erodibility under certain assumptions
 - $n=1$
• Assume erodibility is solely a function of lithology
 - Allows maps of relative erosion rates in a given lithology

• Assume erosion rates of Boone and Everton are equal in the main stem
Relative erosion rates

Relative E

- 0.00 - 0.66
- 0.67 - 1.54
- 1.55 - 2.96
- 2.97 - 5.19
- 5.20 - 10.05

Geologic Unit
- Pennsylvanian Sandstones
- Mississippian Pitkin, Fayetteville, Batesville
- Mississippian Boone
- Ordovician Everton
Relative erosion rates

Relative E
- 0.00 - 0.66
- 0.67 - 1.54
- 1.55 - 2.96
- 2.97 - 5.19
- 5.20 - 10.05

Geologic Unit
- Pennsylvanian Sandstones
- Mississippian Pitkin, Fayetteville, Batesville
- Mississippian Boone
- Ordovician Everton
Assume erosion rates throughout the basin are equal

Don’t assume erodibility is solely a function of lithology
 • Determine relative erodibility

n=1

Reference chi gradient value is the mean of all chi gradient values in the basin
Relative erodibility

<table>
<thead>
<tr>
<th>Relative K</th>
<th>Geologic unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.80 - -0.37</td>
<td>Pennsylvanian Sandstones</td>
</tr>
<tr>
<td>-0.36 - 0.06</td>
<td>Mississippian Fayetteville, Pitkin, Batesville</td>
</tr>
<tr>
<td>0.07 - 0.49</td>
<td>Mississippian Boone</td>
</tr>
<tr>
<td>0.50 - 0.93</td>
<td>Ordovician Everton</td>
</tr>
<tr>
<td>0.94 - 1.37</td>
<td></td>
</tr>
</tbody>
</table>
Relative erodibility

<table>
<thead>
<tr>
<th>Relative K</th>
<th>Geologic unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.80 - -0.37</td>
<td>Pennsylvaniaan Sandstones</td>
</tr>
<tr>
<td>-0.36 - 0.06</td>
<td>Mississippian Fayetteville, Pitkin, Batesville</td>
</tr>
<tr>
<td>0.07 - 0.49</td>
<td>Mississippian Boone</td>
</tr>
<tr>
<td>0.50 - 0.93</td>
<td>Ordovician Everton</td>
</tr>
<tr>
<td>0.94 - 1.37</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Dominant control on bedrock channel steepness is not substrate lithology, but sediment supply from sandstone caprock
 - Overwhelm channel’s ability to mobilize sediment
 - Removal of caprock material limits the rate of tributary channel erosion
- Ratio of chi gradients
 - Highest relative erosion rates beneath sandstone caprock
 - Lowest relative erodibility beneath sandstone caprock
 - Boulders armor channel and prevent erosion (Sklar and Dietrich, 2004)
- The main stem of the Buffalo is less affected by the sandstone caprock
Questions?
Schmidt Hammer scores of the dominant lithologies in the basin