Climate Drivers of Equilibrium Line Altitude Changes at Four Low-Latitude Andean Glaciers:
Different Drivers, But Likely Continued Retreat In a Warming World

Andrew Malone (amalone@uchicago.edu)
Douglas MacAyeal
South America Is Ideal For Tropical Glacier Study

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications

(Randolph Glacier Inventory)

2,893 glaciers (~98%)
2,338 km² (>99%)
South America Is Ideal For Tropical Glacier Study

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications

Adapted, Gardner et al., 2013

(Randolph Glacier Inventory)

2,893 glaciers (~98%)
2,338 km (>99%)

Antarctic & Sub-Arctic
Southern Andes
Low Latitudes
Himalayas
North Asia
Russian Arctic
Scandinavia
Svalbard
Iceland
Greenland
Arctic Canada (South)
Arctic Canada (North)
Western Canada/US
Alaska

Mass loss rate (kg m\(^{-2}\) y\(^{-1}\))
South America Is Ideal For Tropical Glacier Study

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications

(adapted, Gardner et al., 2013)
What are the dominant climate forcings that dictate tropical glacier variability in the recent past?
Equilibrium Line Altitude As a Metric of Glacier Change

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Equilibrium Line Altitude As a Metric of Glacier Change

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications

(modified, Kaser, 2001)
Equilibrium Line Altitude As a Metric of Glacier Change

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications

(modified, Kaser, 2001)
Equilibrium Line Altitude As a Metric of Glacier Change

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications

Equilibrium Line Altitude (ELA)

Accumulation Zone

Ablation Zone

Bedrock

Direction of flow

(gain)

(loss)

Equilibrium line

Effective balance

0

Δz [m]

Δb [kg m\(^{-2}\) a\(^{-1}\)]

(modified, Kaser, 2001)
Quantify Glacier Change Using an Energy Balance Model

Radiative Fluxes
- S_{down}
- S_{up}
- L_{down}
- L_{up}

Turbulent Fluxes
- Q_S
- Q_L
- Q_R

Other Fluxes

Ice Surface

Q_G
Quantify Glacier Change Using an Energy Balance Model

Inputs

Climate Signal

Radiative Fluxes: S_{down}, S_{up}, L_{down}, L_{up}

Turbulent Fluxes: Q_S, Q_L

Other Fluxes: Q_R

Ice Surface: Q_G
Quantify Glacier Change Using an Energy Balance Model

1. Tropical Glaciers

2. ELA Modeling

3. ELA Drivers

4. Implications

Inputs

- Climate Signal

Model

- Energy Balance Model

Radiative Fluxes

- S_{down}
- S_{up}

Turbulent Fluxes

- Q_{S}
- Q_{L}
- Q_{R}

Other Fluxes

- Turbulent Fluxes
- Radiative Fluxes

Ice Surface

- Q_{G}
Quantify Glacier Change Using an Energy Balance Model

Inputs
- Climate Signal

Model
- Energy Balance Model

Outputs
- Vertical Balance Profile

Radiative Fluxes
- S_{down}
- S_{up}

Turbulent Fluxes
- Q_S
- Q_L
- Q_R

Other Fluxes
- Turbulent Fluxes
- Other Fluxes

Ice Surface
- Summed Over Thermal Year
- Equilibrium Line Altitude (ELA)
Long-term ELA Tracks Climate Setting of Glacier

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Long-term ELA Tracks Climate Setting of Glacier

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Long-term ELA Tracks Climate Setting of Glacier

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications

Mean Climatological ELA
Wet Tropical Glacier ELAs Track Freezing Level Heights

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Wet Tropical Glacier ELAs Track Freezing Level Heights

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Wet Tropical Glacier ELAs Track Freezing Level Heights

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Wet Tropical Glacier ELAs Track Freezing Level Heights

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Wet Tropical Glacier ELAs Track Freezing Level Heights

1. Tropical Glaciers

2. ELA Modeling

3. ELA Drivers

4. Implications

- ELA: Freezing Level Height
- Precipitation Rate

Map showing locations of wet tropical glaciers with circles indicating different areas.

Graph showing time series data for elevation anomalies (m) with different scales for precipitation rate (m y⁻¹). Coefficients of correlation (r) indicated for different intervals.
Dry Tropical Glacier ELAs Mainly Track Precipitation
Dry Tropical Glacier ELAs Mainly Track Precipitation

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Dry Tropical Glacier ELAs Mainly Track Precipitation

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Dry Tropical Glacier ELAs Mainly Track Precipitation

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Dry Tropical Glacier ELAs Mainly Track Precipitation

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Dry Tropical Glacier ELAs Mainly Track Precipitation

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
ENSO Trends Partially Explain ELA Variability

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
ENSO Trends Partially Explain ELA Variability

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
ENSO Trends Partially Explain ELA Variability

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
ENSO Trends Partially Explain ELA Variability

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
ENSO Trends Partially Explain ELA Variability

1. Tropical Glaciers

2. ELA Modeling

3. ELA Drivers

4. Implications

Graph showing trends in NINO 3.4 (°C) and its correlation with ELA at different locations:
- Salama: r = 0.55, p < 0.01
- Huascaran: r = 0.51, p < 0.01
- Illimani: r = 0.64, p < 0.01
- Quecay: r = 0.44, p < 0.05
ENSO Trends Partially Explain ELA Variability

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications
Tropical Glaciers Respond to Regional Climate Trends
Tropical Glaciers Respond to Regional Climate Trends

Tropical glacier ELAs reflect trends noticeable at annual and interannual timescales.
Tropical glacier ELAs reflect trends noticeable at annual and interannual timescales.

Temperature changes dictate wet tropical glacier ELA changes through effects on the summertime freezing level height.
Tropical Glaciers Respond to Regional Climate Trends

Tropical glacier ELAs reflect trends noticeable at annual and interannual timescales.

Temperature changes dictate wet tropical glacier ELA changes through effects on the summertime freezing level height.

ELAs of sublimation-dominated glaciers strongly respond to precipitation rate changes but the freezing level height dictates the lowest ELAs.
Tropical glacier ELAs reflect trends noticeable at annual and interannual timescales

Temperature changes dictate wet tropical glacier ELA changes through effects on the summertime freezing level height

ELAs of sublimation-dominated glaciers strongly respond to precipitation rate changes but the freezing level height dictates the lowest ELAs

ENSO plays partial role in ELAs variations
Tropical glacier ELAs reflect trends noticeable at annual and interannual timescales

Temperature changes dictate wet tropical glacier ELA changes through effects on the summertime freezing level height

ELAs of sublimation-dominated glaciers strongly respond to precipitation rate changes but the freezing level height dictates the lowest ELAs

ENSO plays partial role in ELAs variations

(NOAA)
Tropical glacier ELAs reflect trends noticeable at annual and interannual timescales.

Temperature changes dictate wet tropical glacier ELA changes through effects on the summertime freezing level height.

ELAs of sublimation-dominated glaciers strongly respond to precipitation rate changes but the freezing level height dictates the lowest ELAs.

ENSO plays partial role in ELAs variations.

Tropical Glaciers Repsond to Regional Climate Trends

amalone@uchicago.edu
geosci.uchicago.edu/~amalone

1. Tropical Glaciers
2. ELA Modeling
3. ELA Drivers
4. Implications