EVALUATING METHODS OF FIELD-BASED 3-D VISUALIZATION AND THEIR APPLICATION TO MAPPING METAMORPHIC TERRANES: AN EXAMPLE FROM THE PANAMINT MOUNTAINS, CALIFORNIA

Jade Ashley Brush Terry L. Pavlis Jose M. Hurtado, Jr. The University of Texas at El Paso Jeffrey R. Knott California State University, Fullerton

AGENDA

- Rational for 3D Visualizations
- × Study Area
- x Geologic Background
- × Methods
 - + Field
 - + Computer Lab
- × Analysis
- × Conclusion

MODERN TECHNOLOGY

× 3D visualizations of Earth's surface

- + Allow for mapping remote, inaccessible locations
- + Obtain orientation data
- + Analyze complex structures
- + Helps optimize field time

× Purpose:

- + Produce 3D visualizations from photogrammetry (SfM) that are comparable to LiDAR
- + How can we increase the spatial accuracy of photogrammetrically-derived models?

STUDY AREA

GEOLOGIC BACKGROUND

- × Metamorphic complex
- Polyphase metamorphic structure (Mesozoic)
- SD technology used to visualize complex structure

FIELD METHODS: PHOTOGRAMMETRY

Handheld LaserCraft Contour XLRic laser rangefinder

- + Used to get ground control points (GCPs) up to ~1000 m distance
- Geolocation limited by GPS (1 3 m)
- + Canon Rebel T3i DSLR used to take photographs

FIELD METHODS: LIDAR

- **x** UNAVCO Riegl LMS-Z620 TLS
 - + Nikkon Camera
 - + Differential GPS 3 cm accuracy
 - Laser rangefinder 10 mm accuracy
 - + 2 km maximum range
- × 20 scan locations

METHODS: COMPUTER LAB

- Point-cloud processing
 - + PhotoScan make point-clouds using photogrammetry
 - + RiScan Pro Tile LiDAR point-clouds
 - Maptek I-Site Build 3D surface models from point-clouds

PHOTOGRAMMETRY: 3D INTERPRETATIONS

LEGEND Faults Base Surprise Member Base Quartzite Base Dolomite Marble CalcSilicate Mineralization

100 m

,,,,,,,,,,,,,,,,,,,

LIDAR: 3D INTERPRETATIONS

LEGEND Faults Base Surprise Member Base Quartzite Base Dolomite Marble CalcSilicate Mineralization

SPATIAL ACCURACY FOR PHOTOGRAMMETRY

- × Vertical imagery—moderately well tested
- x Little data on oblique imagery only
- Examined several sites—compare LiDAR to Photogrammetry

VISUAL 3D SURFACE COMPARISON

Photogrammetry No GCPs LiDAR Photogrammetry With GCPs

QUANTIFIED 3D OFFSET OF SURFACE MODELS

* Photogrammetry (with GCPs) v. LiDAR

- + Max offset 200 m
- + Average 64 m

QUANTIFIED 3D OFFSET OF SURFACE MODELS

* Photogrammetry (without GCPs) v. LiDAR

- + Max offset 252 m
- + Average offset 186 m

PHOTOGRAMMETRY 3D SURFACE MODEL

LIDAR 3D SURFACE MODEL

3D POINT-CLOUD REGISTRATION

QUANTIFIED 3D OFFSET OF SURFACE MODELS

* Photogrammetry v. LiDAR

- + Max offset 45 m
- + Average offset 22 m

OBSERVATIONS

Clair Camp Structure has more error, why?Baseline v. distance to feature

Clair Camp Structure

Noonday Structure

HYPOTHESIS: BASELINE-DISTANCE RATIO

- Baseline v.
 distance to
 feature (star)
 should be 2:1
- The larger the baseline the greater the distance that can be calculated

Modified from

http://polarmet.osu.edu/jbox/icecams/Greenland/project.htm. Based on Wolf, 1983

CONCLUSION

- **x** Baseline-Distance Ratio
- Important: In a real field study can't always control this
- × Use of ground control
- × Vertical angle issue
 - + SfM oblique photogrammetry
 - + Requires further evaluation

REFERENCES

- * Agisoft Photoscan 1.0.0, Tutorial (intermediate level): 3D model reconstruction
- * Andrew, J.E., 2002, The Mesozoic and Tertiary tectonic history of the Panamint Range and Quail Mountains, California [Ph.D. thesis]: Lawrence, University of Kansas, 154p.
- * Burchfiel, B.C. and Stewart, J.H., 1966, "Pull-apart" origin of the central segment of Death Valley, California: Geological Society of America Bulletin, v. 77, no. 4, p. 439-442
- * Knötzl, C., & Reiterer, A., 2010, Evaluation of an image-assisted deformation monitoring system: *in* Junior Scientist Conference 2010, p. 43 44.
- Labotka, T.C., Albee, A.L., Lanphere, M.A., and McDowell, S.D., 1980, Stratigraphy, structure, and metamorphism in the central Panamint Mountains (Telescope Peak Quadrangle), Death Valley area, California: *Geological Society of America Bulletin*, v. 91, p. 125–1129, II843–II933.
- * Pavlis, T.L., Langford, R., Hurtado, J., and Serpa, L., 2010, Computer-based data acquisition and visualization systems in field geology: Results from 12 years of experimentation and future potential: *Geosphere*, 6, 275-294, doi: 10.1130/GES00503.1.
- * Wernicke, B., Axen, G.J., Snow, J.K., 1988, Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada: Geological Society of America Bulletin, v. 100, p. 1738 1757
- * Wolf, P.R., 1983, Elements of photogrammetry, with air photo interpretation and remote sensing, Second Edition: McGraw-Hill, Boston. P. 628.
- * Wolf, P.R., and Dewitt, B.A., 2000, Elements of photogrammetry, with applications to GIS, Third Edition: McGraw-Hill, Boston. p. 608.