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WVhat can seismology tell us
about rifting processes!?

Localized strain due to upwelling

® Geometry of boundaries (Moho,
LAB) constrains distribution of
strain throughout lithosphere,
informing on rheology and modes = &
of deformation

(Huismans et al., 2001)

® 3D/along-strike variation relates LR W
rifting to preexisting structure /—\\
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WVhat can seismology tell us
about rifting processes!?

NEEDS

® Geometry of boundaries (Moho,
LAB) constrains distribution of Ability to map complex,
strain throughout lithosphere,
informing on rheology and modes
of deformation

steeply dipping structure

e 3D/along-strike variation relates 3D formulation/ability to
rifting to preexisting structure incorporate 3D velocities
® Vp/Vs ratio helps understand Handle tradeoff between

distribution and role of melt

boundary depth and
smooth velocity



Continental rifting in
Southern California

At 5-6 Mya, Baja California transferred to the Pacific Plate

Narrow mode rifting presently occurring in Salton Trough
and Sea of Cortez

Salton Trough transitioned from block rotation to pull apart
basins, spreading centers
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Episode | Pull-apart model

Brothers et al. 2009
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Seismic receiver
function method

P wave arrives from distant
earthquakes

® At boundaries, some energy

converted from fast P to
slower S and is recorded later

Depth to boundary calculated
assuming P and S velocities
and wave geometry

Complicated by free-surface
multiple reflections
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Limitations of CCP stacking

A

common conversion point

® Find conversion points
assuming boundaries are
flat, model is 1D

® Dip of resulting structure is
Inaccurate

Events from right
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Lekic & Fischer (in prep)



surface New method: ‘Full’
D Model ‘waveform’ inversion
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New method: ‘Full’

‘waveform’ inversion

Try to explain observed
receiver functions

Instead of flat layers, consider
series of point scatterers

For each point, calculate what
we would record at surface if
there is a jump in S velocity
(time, amplitude, polarity)

Least Squares fit to find best
model of scatterers
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New method: ‘Full’
‘waveform’ inversion

Try to explain observed
receiver functions

Instead of flat layers, consider
series of point scatterers

For each point, calculate what
we would record at surface if
there is a jump in S velocity
(time, amplitude, polarity)

Least Squares fit to find best
model of scatterers
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New method: ‘Full’
‘waveform’ inversion

Try to explain observed
receiver functions

Instead of flat layers, consider
series of point scatterers

For each point, calculate what
we would record at surface if
there is a jump in S velocity
(time, amplitude, polarity)

Least Squares fit to find best
model of scatterers



FWI with So. California Seismic Network

~200 earthquakes from 35-90°

~100,000 total RFs binned by
azimuth and ray parameter

-118.5 -118 -117.5 -117 -116.5

e 96 Stations from SCSN

e Paths and traveltimes
calculated through regional

~ SCSN staors model on 2.5km grid

@ Events used in inversion
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FWVI results and
data comparison Receiver functions used
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| -D surface wave inversion for station BBR
S velocity P velocity

0 et or
10 ‘

20

—1

- 109 - 0.9

- Vp/Vs Ratio?

0.6

10
r 10.8

- 0.7 20

~

0.6

30 30

0.5 0.5

Depth (km)

) o " ® Receiver function

" co inversion: constrain
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Courtesy of ; . 70, . VP /VS

Chao Gao )

® Surface waves:
constrain Vp and Vs
Phase velocity ~ given boundary depth

(5s Love) ® Find model that

satisfies both!

Olugboji et al. e ¢
Velocity (km/s)
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Conclusions

® Desire for greater understanding of rifting processes

—dominant rheology, mode of deformation—drives
advances in seismic methods

® Full Waveform Inversion of receiver functions accounts
for 3D structure and can image steep dips

® Probabilistic inversion of surface waves and receiver

functions reduces (and estimates!) uncertainty in
boundaries and Vp/Vs
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