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What can seismology tell us 
about rifting processes?

Pure shear - symmetric

Simple shear - asymmetric
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Localized strain due to upwelling

• Geometry of boundaries (Moho, 
LAB) constrains distribution of 
strain throughout lithosphere, 
informing on rheology and modes 
of deformation 

• 3D/along-strike variation relates 
rifting to preexisting structure

• Vp/Vs ratio helps understand 
distribution and role of melt



Ability to map complex, 
steeply dipping structure

3D formulation/ability to 
incorporate 3D velocities 

Handle tradeoff between 
boundary depth and 

smooth velocity

NEEDS

What can seismology tell us 
about rifting processes?

• Geometry of boundaries (Moho, 
LAB) constrains distribution of 
strain throughout lithosphere, 
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rifting to preexisting structure
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Continental rifting in 
Southern California

• At 5-6 Mya, Baja California transferred to the Pacific Plate

• Narrow mode rifting presently occurring in Salton Trough 
and Sea of Cortez

• Salton Trough transitioned from block rotation to pull apart 
basins, spreading centers

Brothers(et(al.(2009((



Seismic receiver 
function method

• P wave arrives from distant 
earthquakes

• At boundaries, some energy 
converted from fast P to 
slower S and is recorded later 

• Depth to boundary calculated 
assuming P and S velocities 
and wave geometry

• Complicated by free-surface 
multiple reflections
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Imaging Salton 
Trough with Receiver 

Functions

Common Conversion Point (CCP) Stacks from Lekic et al. (2011)
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Limitations of CCP stacking

• Find conversion points 
assuming boundaries are 
flat, model is 1D

• Dip of resulting structure is 
inaccurate

common%conversion%point%
%
S.waves%from%different%
earthquakes%

Events from right

Events from left

Lekic & Fischer (in prep)



New method:  ‘Full’ 
‘waveform’ inversion
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• Try to explain observed 
receiver functions

• Instead of flat layers, consider 
series of point scatterers

• For each point, calculate what 
we would record at surface if 
there is a jump in S velocity 
(time, amplitude, polarity)

• Least Squares fit to find best 
model of scatterers

1D Model
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• Try to explain observed 
receiver functions

• Instead of flat layers, consider 
series of point scatterers

• For each point, calculate what 
we would record at surface if 
there is a jump in S velocity 
(time, amplitude, polarity)

• Least Squares fit to find best 
model of scatterers

3D Model



3D Model
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3D Model
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receiver functions

• Instead of flat layers, consider 
series of point scatterers

• For each point, calculate what 
we would record at surface if 
there is a jump in S velocity 
(time, amplitude, polarity)

• Least Squares fit to find best 
model of scatterers



FWI with So. California Seismic Network

 

 

SCSN stations
Events used in inversion

• ~200 earthquakes from 35-90º

• ~100,000 total RFs binned by 
azimuth and ray parameter
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• 96 Stations from SCSN

• Paths and traveltimes 
calculated through regional 
model on 2.5km grid
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FWI results and 
data comparison Data used in inversion

Event*Station index
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Receiver functions used

Forward modeled RFs
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SCSN image, (34.24N,-118.37W) to (33.02N,-115.98W)
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• Receiver function 
inversion: constrain 
boundary depth given 
Vp/Vs

• Surface waves: 
constrain Vp and Vs 
given boundary depth

• Find model that 
satisfies both!

Vp/Vs Ratio?

Phase velocity 
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• Test data fit with ~3 
million models to 
determine statistics

• Reduce the tradeoff 
between Vp/Vs and 
depth of boundaries

• Estimate uncertainty 
in velocity structure, 
depth

Gao & Lekic 
2015

Probabilistic joint 
inversion of RFs 

and surface waves

Surface waves alone

Surface waves + RFs



Conclusions
• Desire for greater understanding of rifting processes

—dominant rheology, mode of deformation—drives 
advances in seismic methods

• Full Waveform Inversion of receiver functions accounts 
for 3D structure and can image steep dips

• Probabilistic inversion of surface waves and receiver 
functions reduces (and estimates!) uncertainty in 
boundaries and Vp/Vs
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