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Altered Noachian
basement

Layered sulfates
exposed over
~1000 km?

beneath eroded
edge of Syrtis
Major lava flows



Northeast Syrtis sequence spans first billion years of
Mars history

Layered sulfates record major environmental change
during Noachian—Hesperian transition

» More acidic style of alteration
« Capped by un-altered Syrtis Major lavas
* Proxy for global change
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Layered sulfates ~ 300m thick atop basement

PSP 009217 1975 - ESP 027625 1975
View to the northwest

Syrtis Major lavas
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Layered
sulfates

Oblique view (towards NE)

Layers exposed in erosional window

Syrtis Major lavas



Basement high

Syrtis Major lavas

Layered
sulfates

Oblique view (towards NE)
Boxwork fractures cover 40% of layered sulfate



Possible mechanisms for
layered sulfate formation

Lava flow
Effusive volcanism over
large area [2,4]

Ash fall
Airborne volcanic ash from
explosive eruptions [3]

VOLCANIC

Ash flow
Pyroclastic flow deposits

Lacustrine (deep)
Lake covering the entire

region

Lacustrine (shallow)
Lakes in localized craters or
valleys

Alluvial/ fluvial
River or upstream
sedimentary system

Evaporite
Playas/ephemeral lakes,
deposition by drying [10]

SEDIMENTARY

Aeolian
Wind-blown dust and sand

Glacial/ snowfall
Dust residue from
precipitation and
sublimation [5]
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Beddig extracted from
and CTX elevation models

& - Layered sulfates dip <10°
everywhere

« Poor exposure leads to high
uncertainty




Syrtis Major lavas
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Minimizing orientation errors

Exposed bedding su.rface (323 m)




Principal component analysis
- Generalization of linear least squares

Visualization of shape of input data and
residuals along major axes

Enables accounting for arbitrarily
oriented errors

Long cross-section: 323 m
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Residuals: 3.3 m
Short cross-section: 14 m
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Orientation errors (spherical projection)

Spherical
projection of land2 o

orientation errors _ error surfaces
Vertical




Poor fits from multiple orientation
measurements

Spherical
projection of lTand 2o

orientation errors ernror surfaces
\ertical

Test prior assumption that
Individual planes are part
of a single stratigraphy...
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Combining multiple planes
reduces error

Spherical
projection of lTand 2 o
orientation errors I error surfaces

Vertical

» Single fit over 7 km of exposure

« Contains error minima of all
component planes

« Maximum residual: 6.6 m




Unconformity with capping
Syrtis Major lava flows

W e —
Spherical
projection of lTand2 o
orientation errors l error surfaces

Vertical

- Near-perfectly planar strata in
layered sulfates

- Dipping differently at > 3 o level




Bedding results
for layered sulfates

» Low-angle (<10°) dips
everywhere

 Locally, planar stratigraphy
(homoclinal) at 5-km scale

 Unconformable with
overriding lavas

» Uncertain if deposited on flat
surface (equipotential) or
draping low-angle slope

Possible mechanisms for
layered sulfate formation

Ash fall
Airborne volcanic ash from
explosive eruptions [3]

VOLCANIC

Lacustrine (deep)
Lake covering the entire

region

Lacustrine (shallow)

Lakes in localized craters or

valleys

Evaporite
Playas/ephemeral lakes,
deposition by drying [10]

SEDIMENTARY

) )N

Glacial/ snowfall
Dust residue from
precipitation and
sublimation [5]
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Boxwork polygons: key markers of alterati
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Boxwork polygons: filled volume-loss frac
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' Boxwork polygons: filled volume-loss fractures
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- Boxwork polygons at ~500 m scale

* Ridges enriched in jarosite (K-Fe-sulfate)
with up to 30 m of relief
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' Boxwork polygons: filled volume-loss fractures
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Spherical
projection of lTand 2o

orientation errors error surfaces
Vertical

Often non—vertical

Can penetrate full exposed

thickness of layered sulfate (up to
200 m depth)

Not formed at free surface




Polygonal faulting: an Earth analog?

» polygonal fracture geometry >~ 1

* no preferred orientation

* non-vertical dips
* penetrative but layer-bound —=<=f——C— —

» ~100-1000 m scale —c 7 v
//
7
/
Goulty et al., 2008
0 1 km Petroleum Geoscience
Mechanism ! !

Compaction of clay-rich sediments forms layer-bound faults
during diagenesis and shallow burial
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Mineralization along preexisting fracture network
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Alteration fronts parallel to fracture plane







Fluid alteration: associated with lava flow?

Alteration halo grades into boxwork fractures




Model of deposition and alteration of layered sulfates

Deposition as sediments (flat-lying to draping)

Burial by capping Syrtis Major lava

W Diagenesis and volume-loss fracturing

Fluid mineralization

Differential erosion




Model of deposition and alteration of layered sulfates
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Deposition as sediments (flat-lying to draping)

2 2 Unconformity masks
Burial by lava potential history
of deposition, erosion

Diagenesis and volume-loss fracturing

Fluid mineralization

Differential erosion



Alternative scenario with substantial early erosion

Deposition of sediments of unknown thickness
(flat-lying to draping)

V/ / Diagenesis and volume-loss fracturing

\/ / / Period of erosion (+fluid alteration)

| ;== Burial by capping Syrtis Major lava
Fluid mineralization

Differential erosion
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Conclusions

- Parallel bedding at km-scale: flat or gently

draping deposition (e.g. lacustrine, evaporite,
*‘-. s

or ash fall)

- Layered sulfates unconformable with
capping Syrtis Major lava

- Boxwork is formed by volume-loss fracturing
followed by fluid flow

 Fluid alteration likely associated with

\ ?) overriding lava

| 4 Ongoing work

- Regionally constrain depositional dips with
further analysis of orientation errors

- Finalize mapping (mineralogy, morphology)

- Examine timing of fracturing relative to lava
emplacement
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