The deposition and alteration history of the northeast Syrtis layered sulfates

Daven Quinn¹ and Bethany Ehlmann^{1,2}

¹ California Institute of Technology ² Jet Propulsion Laboratory

GSA 2015

Northeast Syrtis sequence spans first billion years of Mars history

Layered sulfates record major environmental change during Noachian—Hesperian transition

- More acidic style of alteration
- Capped by un-altered Syrtis Major lavas
- Proxy for global change

Layered sulfates ~ 300m thick atop basement PSP_009217_1975 - ESP_027625_1975 View to the northwest

Syrtis Major lavas

layered sulfates beneath dusty mantle

W 9.90 M

Layered sulfates

F----~ 5 km

Oblique view (towards NE) Layers exposed in erosional window

Syrtis Major lavas

Oblique view (towards NE) Boxwork fractures cover 40% of layered sulfate

~10

km

Orientation measurements

Bedding extracted from HiRISE and CTX elevation models

- Layered sulfates dip <10° everywhere
- Poor exposure leads to high uncertainty

< m

Minimizing orientation errors

5 km

Syrtis Major lavas

Minimizing orientation errors

Exposed bedding surface (323 m)

Principal component analysis

- Generalization of linear least squares
- Visualization of shape of input data and residuals along major axes
- Enables accounting for arbitrarily oriented errors

Orientation errors (spherical projection)

Poor fits from multiple orientation measurements

Test prior assumption that individual planes are part of a single stratigraphy...

Combining multiple planes reduces error

- Single fit over 7 km of exposure
- Contains error minima of all component planes
- Maximum residual: 6.6 m

- Near-perfectly planar strata in layered sulfates
- Dipping differently at $> 3 \sigma$ level

Bedding results for layered sulfates

- Low-angle (<10°) dips everywhere
- Locally, planar stratigraphy (homoclinal) at 5-km scale
- Unconformable with overriding lavas
- Uncertain if deposited on flat surface (*equipotential*) or draping low-angle slope

Possible mechanisms for layered sulfate formation

Boxwork polygons: key markers of alteration history

Boxwork polygons: filled volume-loss fractures

No preferred orientation (no regional stress field)

Rose diagram of boxwork strike $n = 295 \ km$

°08

Boxwork polygons: filled volume-loss fractures

- Boxwork polygons at ~500 m scale
- Ridges enriched in jarosite (K-Fe-sulfate) with up to 30 m of relief

Boxwork polygons: filled volume-loss fractures

Can penetrate full exposed thickness of layered sulfate *(up to 200 m depth)*

Not formed at free surface

Polygonal faulting: an Earth analog?

Compaction of clay-rich sediments forms layer-bound faults during diagenesis and shallow burial

Mineralization along preexisting fracture network

Alteration fronts parallel to fracture plane Evidence of fluid flow through preexisting fractures

Fluid alteration: associated with lava flow?

High-albedo alteration halo beneath lava flow

Fluid alteration: associated with lava flow?

Alteration halo grades into boxwork fractures

Model of deposition and alteration of layered sulfates

Deposition as sediments (flat-lying to draping)

Burial by capping Syrtis Major lava

Diagenesis and volume-loss fracturing

Fluid mineralization

Differential erosion

Model of deposition and alteration of layered sulfates

Deposition as sediments (flat-lying to draping)

??		Unconformity masks
	Burial by lava	potential history
		of deposition, erosion

Diagenesis and volume-loss fracturing

Fluid mineralization

Differential erosion

Alternative scenario with substantial early erosion

Deposition of sediments of unknown thickness (flat-lying to draping)

Diagenesis and volume-loss fracturing

Period of erosion (±fluid alteration)

Burial by capping Syrtis Major lava **Fluid mineralization**

Differential erosion

Conclusions

- Parallel bedding at km-scale: flat or gently draping deposition (e.g. lacustrine, evaporite, or ash fall)
- Layered sulfates unconformable with capping Syrtis Major lava
- Boxwork is formed by volume-loss fracturing followed by fluid flow
- Fluid alteration likely associated with overriding lava

Ongoing work

- Regionally constrain depositional dips with further analysis of orientation errors
- Finalize mapping (mineralogy, morphology)
- Examine timing of fracturing relative to lava emplacement