COLLISIONAL TECTONICS OF THE SOUTHERN APPALACHIAN OROGENIC BELT -REINTERPRETATION OF ADCOH AND COCORP SEISMIC REFLECTION DATA WITH CONSTRAINTS FROM NEW POTENTIAL FIELD DATA

Patrick D. Duff and James N. Kellogg University of South Carolina

Major Findings

- Grenville basement extends eastward underneath the Carolina Terrane.
- Appalachian Paired Gravity Anomaly can be explained without a change in lower-crustal density (Grenville basement).
- The low-density Piedmont Blue Ridge Allochthon over-thrusts dense footwall duplex structures (Grenville basement) and not platform sediments.

Regional Gravity Anomaly Map

Appalachian Paired Gravity Anomaly

Hayesville Anomaly

	Densities	Densities Used in Gravity Forward Modelling					
\cap	Unit		Density (g/cc)		Reference		Data
	Allochtho	onous Crust	2.79		Warren et al. (1966);		Dala
	(Carolina Magnetic Susceptibilities Used in Magnetic Forward Modelli						
		Unit		Density (cgs)		Reference	
-	Mafic Int	Allochthonous Crust (Carolina Terrane)		0-1 X 10 ⁻²		Sumner (197 Cumbest et a	77); al. <i>,</i>
2	Paleozoic				(1992)		
	Laurentia	Mafic Intrusions		6-7 X 10 ⁻²		Sumner (197 Cumbest et a (1992)	77); al. <i>,</i>
+	Proterozo Cambriar	Granite Intrusions		0-4 X 10 ⁻³		Cumbest et al., (1992); Tuten and Berry (2013)	
	Grenville	Coastal Plain Sediments		0		Cumbest et a (1992)	al.,
4	Mantle		3.4		Warren e Christens	t al. (1966); en (1989)	

Previous Models of the Appalachian Paired Gravity Anomaly

COCORP Seismic Data

Model with Basement Grabens

Model without Basement Grabens

Seismically defined basement grabens only produce a ~ 1 mGal anomaly, and cannot make a major contribution to the Appalachian gravity gradient as proposed by Favret and Williams (1988).

Conclusions and Implications

Appalachian Paired Gravity Anomaly -

- explained without a density contrast in the lower crust
- possible that Grenville basement rocks extend eastward underneath the Carolina Terrane

Conclusions and Implications

Relative Gravity High within Appalachian Low -

- dense material required is unlikely to be platform sediments
- eastern edge of platform sediments does not underlie the Blue Ridge, as previously interpreted
- instead, the material forming the basement duplex or imbricate structures may need to be reinterpreted as basement horse blocks and not Paleozoic shelf strata

Retro-Deformed Model

- Model illustrates block configuration at ~ 330 Ma, prior to final closure of the Paleo-Atlantic and Alleghanian ٠ Orogenesis.
- Retro-deformation was created by pulling out the 210 km of crustal shortening in the Appalachian Fold/Thrust ٠ Belt (Valley and Ridge), proposed by Hatcher (2007).
- Crustal shortening in the Blue Ridge, Inner Piedmont, and Carolina Terrane is not taken into account. ٠
- Thus, this model represents minimum estimates of the eastward extent of platform sediments and the Central ٠ Piedmont Suture. 16

Acknowledgements

Thank you to SCDNR – SC Geological Survey, Bill Clendenin and Scott Howard, for supporting this research.

References

- Christensen, N.I., 1989, Pore pressure, seismic velocities, and crustal structure, *in* Pakiser, L.C., and Mooney, W.D., eds., Geophysical framework of the continental United States: Geological Society of America Memoir 172, p. 783–798.
- Christensen, Nikolas and Daniel Szymanski, 1991, Seismic properties and the origin of reflectivity from a classic Paleozoic sedimentary sequence, Valley and Ridge province, southern Appalachians: GSA Bulletin, v. 103, p. 277-289.
- Cook, Frederick A., GEOPHYSICAL ANOMALIES ALONG STRIKE OF THE SOUTHERN APPALACHIAN PIEDMONT, 1984, Tectonics, vol. 3, no. 1, p. 45-61.
- Harry, D. L., and J. Londono, 2004, Structure and evolution of the central Gulf of Mexico continental
- margin and coastal plain, southeast United States, GSA Bulletin, v. 116, no. ½, p. 188-199
- Hatcher, Robert D., Peter J. Lemiski, and Jennifer Whisner, Character of rigid boundaries and internal deformation of the southern Appalachian fold and thrust belt, 2007, GSA Special Publication 433.
- Hawman, Robert B., 1996, Wide-angle, three-component seismic reflection profiling of the crust along the East Coast Gravity High, southern Appalachians, using quarry blasts, Journal of Geophysical Research, v. 101, no. B6, p. 13,933-13,945
- Parker, Horry E., Robert B. Hawman, Karen M. Fischer, and Laura S. Wagner, 2013, Crustal evolution across the southern Appalachians: Initial results from the SESAME broadband array, Geophysical Research Letters, vol. 40, p. 3853-3857.
- Warren, D., Healy, J., and Jackson, W., 1966, Crustal seismic measurements in southern Mississippi: Journal of Geophysical Research, v. 71, p. 3437–3458.

Regional Geologic Map

Velocity Structure of BR, IP, CT

Shelf Strata under CPS

