OXYGEN FUGACITY OF ABYSSAL PERIDOTITES ALONG THE GAKKEL RIDGE
We show that the low-Cr# lherzolites and harzburgites range from -0.1 to +0.6 log units relative to the QFM buffer, consistent with the global abyssal peridotite array, whereas high-Cr# refractory harzburgites have low fO2 values, ranging from -0.7 to -2.7 log units below QFM, with the most refractory samples falling significantly lower than the global array.
Because D’Errico et al. (submitted) interprets the refractory samples as recording ancient melt extraction, the low fO2 recorded by these samples may originate in the geologic past, perhaps even in a different tectonic setting. While LREE enrichment in the refractory harzburgites [2] provides evidence for refertilization by an infiltrating melt that could have recently imprinted reducing conditions, we see no corresponding increase in TiO2 content in the spinels, which weakens this hypothesis. Further research on additional refractory harzburgites is needed to constrain whether the reduced nature of these samples is telling us something about the effect of extreme melt extraction on fO2 at ridges, or whether these samples record a unique history that obscures processes operating at ridges today.
[1] Coakley and Cochran, EPSL (1998), [2] D’Errico et al., submitted, [3] Bryndzia and Wood, American Journal of Science (1990)