2015 GSA Annual Meeting in Baltimore, Maryland, USA (1-4 November 2015)

Paper No. 291-28
Presentation Time: 9:00 AM-6:30 PM

HOW LOW WILL THEY GO? THE RESPONSE OF HEADWATER STREAMS IN THE OREGON CASCADES TO THE 2015 DROUGHT


LEWIS, Sarah L.1, GRANT, Gordon E.2, NOLIN, Anne W.1, HEMPEL, Laura A.1, JEFFERSON, Anne J.3 and SELKER, John S.4, (1)College of Earth Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, (2)Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331-8550, (3)Department of Geology, Kent State University, Kent, OH 44242, (4)Biological & Ecological Engineering, Oregon State University, Corvallis, OR 97331, sarah.lewis@oregonstate.edu

Larger rivers draining the Oregon Cascades are sourced from headwater systems with two distinct runoff regimes: surface-flow dominated watersheds with flashy hydrographs, rapid baseflow recession, and very low summer flows; and spring-fed systems, with slow-responding hydrographs, long baseflow recession, and summer flow sustained by deep groundwater fed coldwater springs. Our previous research has explored these differences on both the wet west-side and dry east-side of the Cascade crest, as expressed in contrasting discharge and temperature regimes, drainage efficiency, low and peak flow dynamics, and sensitivity to snowpack and climate change scenarios. In 2015, record low winter snowpack combined with an anomalously dry spring resulted in historically low flows across our research sites and throughout Oregon. These extreme meteorological conditions, equivalent to a 4°C warming scenario, offer an exceptional opportunity to witness how these contrasting stream networks might respond to anticipated changes in amount and timing of recharge.

Conceptually, channel network response to decreasing discharge may involve both lateral and longitudinal contraction. Lateral contraction, the decrease of wetted channel width and depth, occurs in both surface-flow and spring-fed streams as flows diminish. Longitudinal contraction may be expressed as (a) a gradual drying of the stream channel and downstream retreat of the channel head, (b) a “jump” of the channel head downstream to the next spring when an upper spring goes dry, or (c) no change in channel head despite diminishing flows. We hypothesize that while individual stream channels may display a combination of these dynamics, surface-flow and spring-fed watersheds will have distinctive and different behaviors. We field test our hypothesis by monitoring channel head locations in 6 watersheds during the low flow recession of 2015, and repeatedly measuring discharge, water quality and hydraulic geometry at a longitudinal array of sites along each surface-flow or spring-fed channel. The resulting data set can be used to explore the fundamental processes by which drainage networks accommodate decreasing flows.

Handouts
  • Lewis_GSA_151104_poster_final.pdf (2.0 MB)