Holocene Climatic Changes in the Alaskan Arctic as Inferred from Sedimentological and Oxygen-Isotopic Analysis at Wahoo Lake Richard S. Vachula¹, Melissa L. Chipman², Feng Sheng Hu^{1,2,3} vachula2@illinois.edu

LLINOIS

INTRODUCTION **Background and Rationale**

Reconstructions of Holocene climate in the Arctic have been accumulating, allowing for better understanding of how the region may respond to future climate changes. However, long-term records from the Alaskan Arctic are scarce. We conducted sedimentological and isotopic analyses at Wahoo Lake to infer Holocene climate variability in northern Alaska. Holocene variations in $\delta^{18}O$

from Wahoo Lake generally correspond to fluctuations in total solar irradiance, suggesting that solar variability may play an important role in the long-term climate of the Alaskan Arctic.

Study Site

/lap of Alaska with sites mentioned in text. Black dot = Barrov weather/GNIP statior

outlet streams marked with arrows, and red do shows coring site.

Sediment Core Small surface area (0.28 km²) and large watershed (2.68 km², 282.3 ha) Cored subbasin (8.1 m water depth) and adjacent shelf (2.8 m) Open basin (2 inlets, 1 outlet)

Max lake depth = 17.1 m Coring Date: July 5-7th 2011

Methods and Chronology

- Water samples analyzed for δD and $\delta^{18}O$ inlet/outlet streams
- every 1 m from subbasin water column
- Wahoo monthly precipitation modeled using the Online Isotopes in Precipitation Calculator
- Regional Meteoric Water Line (RMWL) defined by Global Network of Isotopes in Precipitation (GNIP) data from Barrow Weather Station

- 11 ²¹⁰Pb ages from bulk sediment

¹Department of Geology, ²Program in Ecology, Evolution, and Conservation Biology, ³Department of Plant Biology, University of Illinois, Urbana, IL

Meteoric Precipitation Temperature	Meteoric Precipitation Seasonality	
High Temperature	More Summer Precip	
Low Temperature-	More Winter Precip	
0.6-0.7 ‰ per °C	Several ‰	

Solar Forcing of Climate and Productivity

- Record of Holocene Total Solar Irradiance (TSI) derived from cosmogenic nuclide Be¹⁰ in ice cores, plotted with 20-point moving average (Steinhilber et al. 2009).
- *Pisidium* δ^{18} O record with TSI curve superimposed.
- C. *Pisidium* δ^{13} C record with TSI curve.
- D. LOI-derived organic matter (OM) variation with TSI curve.

Conclusions

Variations in solar output covary with the *Pisidium* δ^{18} O record, suggesting that solar irradiance may play an important role over the Holocene in the Alaskan Arctic.

TSI variability also corresponds to proxies of productivity at Wahoo Lake. Increases in δ^{13} C and LOIderived OM during the Holocene suggest that Wahoo Lake became either a more productive lake or that increasing lake depth resulted in anoxic bottom waters that better preserved organic material.

During the Holocene, Wahoo Lake changed from a relatively low-productivity, closed-basin lake to a more productive, open-basin lake as a result of regional climatic changes.

Total solar irradiance seems to play an important role in the long-term climate of the Alaskan Arctic.

Acknowledgn We thank Stan Anderson and Shari Fant analysis, Chris Eastoe for water-isotope a Scott Lehman and Chad Wolak for rad A special thanks to Melissa Chipman for standing guidance and me Thanks to Dr. Feng Sheng Hu and the Hu L comments, and criticis Funding for this research was provided by Department Undergraduate Res

mchipman@life.illinois.edu fshu@illinois.edu

DISCUSSION

 Variability in solar output co-varies with Arctic annual mean surface temperature over the past ~120 years.

Does this pattern exist throughout the Holocene?

Figure from Soon 2009

Summary

Isotopic and sedimentological analyses provide the first climate record from Alaska's North Slope.

Long-term trends in solar irradiance may also influence lacustrine productivity.

ents for carbonate-isotope alysis, and Tom Brown, liocarbon analysis.		 Bowen, G. J. (2015) The Online Isotopes in Precipitation Calculator, version 2.2. http://www.waterisotopes.org. Bowen, Gabriel J., Leonard I. Wassenaar, and Keith A. Hobson. "Global application of stable hydrogen and oxygen isotopes to wildlife forensics." <i>Oecologia</i> 143.3 (2005): 337-348. Soon, Willie W-H. "Variable solar irradiance as a plausible agent for multidecadal variations in the Arctic-wide surface air temperature record of the past 130 years." <i>Geophysical Research Letters</i> 32.16 (2005).
ntorship.		
ib group for their support, ms.		
ISF and a UIUC Geology earch Award.		Holocene." <i>Geophysical Research Letters</i> 36.19 (2009).