Midwestern Sand Dunes, Geoarchaeology, and LiDAR: Preliminary Geomorphic Landform Analysis of the Sandy Springs Paleoindian Site in the Upper Ohio River Valley

Matthew P. Purtill and J. Steven Kite
Paleoindian Sites in Southern Ohio

of Diagnostic Points at Sandy Springs Almost = All Other Sites Combined
Paleoindian Temporal Period:
• 13.5 – 11.4 ka cal yrs B.P.
• Initial large-scale human colonization of North America
• Low populations and high mobility
• Regionally, large sites away from high-quality chert sources are uncommon

Sandy Springs Site:
• Unusually large site with multiple occupations throughout Paleoindian period.
• >100 fluted points documented
• Little professional archaeological or geomorphological study

Clovis and Gainey-style fluted points from Sandy Springs (Photo courtesy of Mark Seeman)
Why Sandy Springs?

Proposed Reasons for Intense Occupation (Cunningham 1973; Seeman et al 1994):

- Sand Dunes had excellent views of landscape
- Natural Ohio River ford
- Animal migration trails
- Saline springs

Beaver Lake-style fluted points from Sandy Springs (Photo: Mark Seeman)
LiDAR imagery:
Data tiles at 0.762 m resolution obtained from the Ohio Geographically Referenced Information Program (OGRIP)
ArcScene View

Vertical exaggeration = 7
Hillshade = 1

2 m exposure of sand dune on Rt. 52
ArcScene View

Vertical exaggeration = 7
Hillshade = 1

Opuntia humifusa (Prickly Pear), Sandy Springs Cemetery
Surficial Geology after Pavey et al. 1999:

O1 - High-level outwash terrace
22-18 ka years BP

O2 - Intermediate outwash terrace
18-15 ka years BP

A – Alluvium
Holocene

Soils:
Otwell, Fine-silty, Mixed, Active, Mesic Oxyaquic Fragiudalfs
Plainfield, Mixed, Mesic Typic Udipsamments
Surficial Geology after Pavey et al. 1999:

O1 - High-level outwash terrace
22-18 ka years BP

O2 - Intermediate outwash terrace
18-15 ka years BP

A – Alluvium
Holocene

Soils:
Otwell, Fine-silty, Mixed, Active, Mesic Oxyaquic Fragiudalfs
Plainfield, Mixed, Mesic Typic Udipsamments
Gilpin Run

Dune

Dune

Ridge and Swale

Ohio R.

A to A' Profile = 11,000 linear ft.
Eolian Features

Morphological Dune Forms
- Source-bordering
- Complex
- Compound barchan-like
- Possible climbing
- Sand sheet
Vertical exaggeration = 7
Hillshade = 1
Morphometrics of Compound Barchan-like Dune

- Max. height = 3.7 m (12.1 ft)
- Length/width ratio = 1.85 (non-elongated, after Pye 1982)
- B side slope = 1.8 %
- B’ side slope = 4.1 %
Morphometrics of the Complex Dune

- Max. height = 5 m (16 ft)
- C side slope = 2.5 %
- C’ side slope = 5 %
Morphometrics of the Complex Dune

- Max. height = 5 m (16 ft)
- D side slope = 8.75 %
- D' side slope = 6.25 %
Morphometrics of Source-Bordering Dune

- Source “basin” area = 111 ha (276 acres)

E to E' Profile

Linear Distance (ft.)

Elevation (ft.)
Morphometrics of Source-Bordering Dune

- Source “basin” area = 111 ha (276 acres)
• South of US 52:
 Dune Height: ~1.5 to 3 m (~5 to 10 ft)

• North of US 52:
 Dune Height: Up to ~9 m (~30 ft)

• Variable Texture: Sand Near U.S. 52 Cut, Increasing Silt to the West
Possible Fluvial Erosion Trim Line
(Above 1937 Flood Limits)
Proposed Dune Formation Model
Proposed Dune Formation Model

Source
Pleistocene
Outwash or
Reworked
Outwash
Proposed Dune Formation Model

Source
- Pleistocene
- Outwash or Reworked Outwash

Local Controls
- Saline Springs and Soils
- Sparse Vegetation
- Lowering Water Table (with Incision)
- Varying Soil Moisture
- Long Fetch for WNW Winds
Proposed Dune Formation Model

Source
Pleistocene Outwash or Reworked Outwash

Local Controls
• Saline Springs and Soils
• Sparse Vegetation
• Lowering Water Table (with Incision)
• Varying Soil Moisture
• Long Fetch for WNW Winds

Sediment Mobilization
• Pleistocene Prevailing WNW Winds
• May Be Analog to Playa Lunette & Carolina Bay Formation
• Eolian transport
 • Suspension (Silt)
 • Saltation (Fine-Med. Sand)
 • Clay-Silt Pelletization
Proposed Dune Formation Model

Local Controls
- Saline Springs and Soils
- Sparse Vegetation
- Lowering Water Table (with Incision)
- Varying Soil Moisture
- Long Fetch for WNW Winds

Sediment Mobilization
- Pleistocene Prevailing WNW Winds
- May Be Analog to Playa Lunette & Carolina Bay Formation
- Eolian transport
 - Suspension (Silt)
 - Saltation (Fine-Med. Sand)
 - Clay-Silt Pelletization

Sediment Deposition
- Reduced Wind Velocity Associated with Surface Roughness or Topographic Barriers
- Dunes Form Immediately Downwind of Source
- Stabilized by Vegetation with Increased Soil Moisture or Decreased Soil Salinity

Source
Pleistocene Outwash or Reworked Outwash
Proposed Dune Formation Model

Source
- Pleistocene Outwash or Reworked Outwash

Local Controls
- Saline Springs and Soils
- Sparse Vegetation
- Lowering Water Table (with Incision)
- Varying Soil Moisture
- Long Fetch for WNW Winds

Sediment Deposition
- Reduced Wind Velocity Associated with Surface Roughness or Topographic Barriers
- Dunes Form Immediately Downwind of Source
- Stabilized by Vegetation with Increased Soil Moisture or Decreased Soil Salinity

Sediment Mobilization
- Pleistocene Prevailing WNW Winds
- May Be Analog to Playa Lunette & Carolina Bay Formation
- Eolian transport
 - Suspension (Silt)
 - Saltation (Fine-Med. Sand)
 - Clay-Silt Pelletization

Sediment Remobilization?
- Possible Remobilization to Form Sand Sheet, Complex Dune and Compound Barchan
- Potential Burial of Paleoindian Sites or Eolian Reworking of Artifacts
Proposed 2015-2016 Investigations

Project Objectives
Landscape geochronology: especially the dunes. Determine if eolian sediments blanket unknown Paleoindian components within the dunes or on adjacent landforms.
Proposed 2015-2016 Investigations

Project Objectives
Landscape geochronology: especially the dunes.
Determine if eolian sediments blanket unknown Paleoindian components within the dunes or on adjacent landforms.

Primary Field Methods
• Cut-Bank descriptions
• Truck-mounted and hand-operated auger cores
• Archaeological shovel testing of Highlands property

Primary Lab Methods
• OSL and ^{14}C dating
• Particle-size analysis
• Soil micromorphology
Proposed 2015-2016 Investigations

Project Objectives
Landscape geochronology: especially the dunes. Determine if eolian sediments blanket unknown Paleoindian components within the dunes or on adjacent landforms.

Primary Field Methods
- Cut-Bank descriptions
- Truck-mounted and hand-operated auger cores
- Archaeological shovel testing of Highlands property

Primary Lab Methods
- OSL and 14C dating
- Particle-size analysis
- Soil micromorphology

Great Potential Contributions
Look for More to Come from Matt Purtill
References Cited:

Cunningham, Roger M.

Seeman, Mark F., Gary Summers, Elaine Dowd, and Larry Morris

Pye, Kenneth