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“Hotspots” are regions of anomalous
volcanism that appear to be unrelated to
plate boundary processes (Tuzo Wilson,
1963). So the term “hotspot” was originally
defined purely as a surface feature with an
unknown cause of volcanism.

Jason Morgan (1971) and others proposed
that hotspots and linear chains of intraplate
volcanoes are made by narrow plumes of
hot material rising from the deepest
mantle.



Many now think of the terms “hotspot” and
“mantle plume” as near-synonyms, and the
term “hotspot” is sometimes used even
where there is no surface volcanism.

Direct evidence that deep-mantle plumes
actually exist and are the cause of all or
most hotspots remains inconclusive, unlike
robust evidence that plate boundary
processes produce most volcanoes.

Tectonic processes within plates and related
upper-mantle convection should also be
considered as mechanisms for volcanoes
that are isolated from plate boundaries.
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Fig. 8 from McHone & Butler, 1984,
“Mesozoic igneous provinces of New
England and the opening of the North
Atlantic Ocean:” GSA Bulletin, v. 95. p. 757-

765.

Mesozoic igneous provinces overlap in

New England:

e Early Triassic = Coastal New
England subalkaline dikes and
plutons

e Early Jurassic = tholeiitic CAMP
dikes and basalts of eastern North
America

e Jurassic = alkali plutons of the
White Mountain Magma Series

* Early Cretaceous = alkali dikes and
plutons of New England-Quebec

e Cretaceous-Tertiary chains and
clusters of seamounts (alkalic
submarine volcanoes) are offshore.

Do deep mantle plumes explain these

features?
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Fig. 1 from

“Mesozoic hotspot epeirogeny

in eastern North America:”

S. Thomas Crough, 1981, Geology,
V. 9, p.2-6.
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Figura 1. Predicted track of Great Mateor hotspot from about 160 to B0 moy. B.P., superposed an
generalized geolegic map of eraton in eastern Narth America, Solid dots ara radiometrically dated
lgneous intrusions which track explains (ste taxt], Trace marks southern limit of Canadian Shield,

suggesting that hotspot saell caused presont structural rediaf.



Fig. 2 from

McHone, J.G., 1996,
“Constraints on the mantle
plume model for Mesozoic
alkaline intrusions in
northeastern North America:”
Canadian Mineralogist, v. 34
pp 325-334.

Seamount ages are by
Duncan, R.A., 1984: “Age-
progressive volcanism in the
New England seamounts and
the opening of the central
Atlantic Ocean. J. Geophys.
Res. V. 89, pp. 9980-9990.
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Fig. 1 from

McHone, J.G., 1996,
“Constraints on the mantle
plume model for Mesozoic
alkaline intrusions in
northeastern North America:
Canadian Mineralogist, v. 34
pp 325-334.

Eastern North American
kimberlites are distributed by
structural controls proposed
by Parrish, J.B. & Lavin, P.M.
1982, “Tectonic model for
kimberlite emplacement in
the Appalachian plateau of
Pennsylvania.” Geology v. 10,
pp. 344-347.
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Fracture zones of the
western Atlantic Ocean
with distribution of
seamounts.

Eastern North American
kimberlites are
distributed by structural
controls proposed by
Parrish, J.B. & Lavin, P.M.
1982, “Tectonic model for
kimberlite emplacement
in the Appalachian
plateau of Pennsylvania.”
Geology v. 10, p.344-347.
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Balling, N., 2000, Deep seismic reflection evidence for ancient subduction
and collision zones within the continental lithosphere of northwestern
Europe: Tectonophysics, v. 329, p. 269-300.



Carlo Doglioni and Don L Anderson, AGU Fall Meeting 2014,
Don L. Anderson Special Session: Theory of the Earth
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Most kimberlites, alkali plutons, and seamount volcanoes of Jurassic and Cretaceous
ages in eastern North America are NOT on mantle plume tracks.

Lithospheric structures may control where mantle melts rise through the crust.

Oceanic fracture zone propagate along plate movement directions, providing
pathways for chains and clusters of seamount volcanoes.

Warm sections of a layered upper mantle can cause local convection and zones of
melting, influenced by plate rifting events

Epeirogeny and doming may be caused by local mantle convection and heating.

There is no need for, or strong evidence for, narrow plumes of material that rise from
the base of the mantle. Hotspots are better related to plate tectonic processes.



Deep Mantie Plume

Melts include lower mantle
materials

Very local “point” source
beneath plates can
make a “hotspot track”

Large dikes must flow
horizontally over great
distances

Domal uplift from buoyant
plume top, heating

Upper Mantle Convection

Melts are derived from upper
mantle “marble cake” components

Large sources within upper mantle
can make isolated “hotspots” and
volcanic chains along fractures

Dikes rise vertically from wide mantle
sources, follow fractures as they open

Epirogenic uplift from buoyant
shallow convection, heating



Fig. 6 from

“Graphic solutions to
problems of plumacy:”
Holden, J.E. & P.R. Vogt,
EOS Trans. AGU, 56,
573-580, 1977.

Flgt.iﬁ';. M?n;Ie plume malerlals transporied by faully plumbing syslem fram the lower regiona to the midoceanic ridgea. {Devils
not 10 scala.



