2. **THE GRAND MANAN BASIN HAS A TECTONIC HISTORY THAT SEPARATES THE EAST FROM THE WEST**

Basalt and strata of Early Triassic Dark Harbour Basalt towards the southeastern end of the island. These strata dip towards the southwest, so the fault at NW Boundary is the northeastern end of the basin. The Miller Pond Road arkose is probably a remnant of the base of basin strata now perched on the horst, and is probably a remnant of the base of basin strata now perched on the horst, and rises under the higher basalt members.

3. **THE GRAND MANAN BASIN HAS A LITHO-STRATIGRAPHIC HISTORY THAT CONNECTS IT TO THE FIRST BASIN**

The location of the basalt and strata, both basalt and strata, is similar in both the Grand Manan and Fundy basins, where they can be observed. Thicknesses vary but are probably greater in the Grand Manan Basin.

4. **SEA FLOOR FAULT TOPOGRAPHY OUTLINES THE WESTERN BASIN**

Bathymetry shows a relatively flat sea floor for the basin, around 80 m deep. Steep and abrupt fault scarps indicate the border fault. This level of the basalt is about 90 meters below the beach. The view is to the NW. At Red Point the border fault is exposed in a wave-cut shoreline bank, with drag-folded Triassic Dark Harbour Basalt (left side) down against Cambrian Long Pond Bay argillite. The top of strata beneath the basalt is visible.

5. **THE EASTERN BASIN BORDER FAULT IS WELL EXPOSED**

This fault separates the western and eastern parts of the island. The Red Point Fault on Grand Manan divides a western hilly upland made by Late Triassic strata from the Downeast Maine Fault System. The Red Point Fault has been active since Late Triassic time, and is still active today. The fault zone is about 5 km wide and 7 km long. The fault zone is marked by a series of small normal faults and a series of small normal faults and a series of small normal faults.

6. **BASE ROCKS ON GRAND MANAN OVERLIE ADJACENT BASEMENT ROCKS**

The contact member shows light and dark layering or Milankovich Cycles (C). Bedding is gently inclined and the contact is sub-horizontal, with dips up a few degrees that vary in direction. Poorly cemented medium grained arkosic red sandstone with sharpstone clasts (A) has a sub-horizontal contact with a basement rock.