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Figure 6: Schematic interpretation of the geometry
of the BT gold deposit, as the result of fold-related
saddle reef structural trap (3D).
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Figure 5: Schematic evolution for formation and
deformation of the dioritic intrusions hosting
the Au mineralization.
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Figure 4c: Stereographic plots for veins.
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Figures 4a and 4b: Stereographic plots for S  and fold axes.1
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Figure 3: Geological detailed map of the BT gold deposit 
and schematic section of the #1 Timmins zone.
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Figure 2: Geological map of the Beauce area showing the location of the 
Bellechasse-Timmins gold deposit (De Souza, 2012).
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Figure 1: Geological map of the southern 
Québec Appalachians (De Souza, 2012).
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Photograph 9: Field example of
dilatation jog, grid #4, Timmins
zone #1.
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Photograph 8: Folded
extension veins, grid #2,
Timmins zone #1.
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Photograph 7: Field example
of slickenside showing strike-
slip motion, grid #1, Timmins
zone #1.

Photograph 6: Field example of 
subhorizontal lineations in shear 
zone, grid #1, Timmins zone #1.
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Photograph 5: Field example
of slickenside showing reverse
motion, grid #1, Timmins
zone #1.
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Photograph 4: Field example
of steeply-plunging lineations
in shear zone, grid #1,
Timmins zone #1.
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Photograph 2: Drill core of
#1 Timmins zone showing
quartz vein with native gold.
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Photograph 3: Thin section of a diorite showing the
typical mineral assemblage of the regional greenschist
-facies metamorphism (LPAx10).

The occurrence of down-dip lineations 
indicates the predominance of reverse 
faulting during mineralization. Ductile-
brittle shears related to the mineralization 
are mainly due to flattening and «locking 
up» of fold hinges, which have been sheared 
out by high-angle reverse faults (Fig. 6). 
The overall geometry of the ore zones is 
therefore controlled by and coeval with the 
regional folding event, and basically 
represents the product of hydrothermal 
circulation and fracturing related to regional 
metamorphism and folding affecting the 
diorite sills/dykes and hosting sedimentary 
rocks. Fluids migrated along faults/shear 
zones and other weakness planes (such as 
bedding and S ) during folding and 1

precipated in favourable low-pressure 
dilation zones (e.g. faults, S  planes, fold 1

axes) created when the hydraulic pressure 
of trapped fluids exceeded the lithostatic 
pressure (Cox et al., 1991; Windh J., 1995).

VI. DISCUSSION & CONCLUSION

There are 3 principal orientations of quartz veins, almost perpendicular to each other, and their intersection is 
subparallel to the fold axis developed in the diorite intrusions. These 3 orientations likely represent different stages 
of deformation and veins formation (Fig. 4c). The first one, subparallel to S , was formed during the development of 1

the schistosity. The second family, represented by flat-lying extension veins, is attributed to folding, when intrusions 
start to be fractured due to high competency contrast and during variations of hydrothermal fluid pressure. These 
veins are locally folded, which indicates that they were formed before the end of folding (Photos #8 and #9). Finally, 
the third type of veins is the result of fracturation during NE-SW extension and/or late-stage compressional strike-
slip faulting coeval with the NW-directed compression that generated the auriferous shear zones.

V. QUARTZ VEINS GEOMETRY

Our structural analysis shows that both the intrusions and 
hosting sedimentary rocks are crosscut by a steeply-
dipping NE-trending axial-planar schistosity (Fig. 4a) and 
by 50 cm- to 5 metres-wide shear zones subparallel to that 
S  schistosity. The shear zones host steeply-plunging 1

slickenlines/lineations and preserved structural evidence 
for NW-verging reverse faulting (Photos #4 and #5). 
Subhorizontal lineations/fault striae are also locally found, 
suggesting late-stage strike-slip motion (Photos #6 and 
#7). Structural relationships between the bedding (S ) and 0

S  in the sedimentary rocks indicate that the sedimentary 1

strata hosting the diorite are tightly folded, with fold axes 
plunging moderately to steeply (ca. 60°) toward the NE or 
the SW (Fig. 4b). As a result of rheological contrast 
between the two rock types, similar folds are found in the 
sedimentary rock sequence whereas the diorite intrusions 
are characterized by concentric folds (Fig. 5).

IV. STRUCTURAL CHARACTERISTICS

The Au mineralization consists of quartz veins and quartz-filled breccias (Photo #1), essentially developed 
in the diorite intrusions (Fig. 3), and which locally form well-developed stockwork structures. The veins are 
made up of quartz ± carbonates, minor sulphide minerals (mostly pyrite and pyrrhotite), and native gold 
occurences (Photo #2). Various types of mineral alteration are visible in the diorite, for instance, 
albitization, silicification, chloritization and carbonatization, all types being related to regional 
metamorphism (Photo #3).

III. AU MINERALIZATION & 
HYDROTHERMAL ALTERATION

The BT gold deposit is hosted by the Magog Group, an Ordovician synorogenic forearc basin sequence 
belonging to the Dunnage Zone of the southern Québec Appalachians (Fig. 2). The Dunnage Zone is 
made up of ophiolites, island-arc volcanic rocks and synorogenic clastic and volcaniclastic sedimentary 
rocks related to the obduction of Iapetan oceanic crust (Pinet et Tremblay, 1995; Tremblay et al., 2011). 
The Au mineralization is developed in diorite sills (and dykes) crosscutting the Upper Ordovician 
(Caradocian) Etchemin Formation, which has been deformed and metamorphosed at greenschist facies 
during the Middle Devonian Acadian orogeny (Tremblay et al., 2000).

II. REGIONAL GEOLOGY

The Bellechasse-Timmins (BT) gold 
deposit is located approximately  
110 km  southeast of Québec city,  
more precisely 7 km from the town 
of Saint-Magloire in the Bellechasse 
County, Québec (Fig. 1), and is part 
of the Bellechasse gold belt of the 
southern Québec Appalachians 
(Gauthier et al., 1987). It is the 
result of fractures filling and the 
formation of saddle reef and related 
structures dur ing orogenic 
d e f o r m a t i o n  c o e v a l  w i t h  
hydrothermal fluids circualtion and 
mineralization, such as typified, for 
instance, by the Lachlan Fold Belt of 
Central Victoria in Australia (Cox et 
al., 1991; Windh J., 1995).

I. INTRODUCTION

Mr. Frank Candido (President and Director of Golden Hope Mines 
Ltd) is thanked for giving us the opportunity to develop the 
project, and facilitate the access to the BT property, and all the 
available information. Many thanks to Michelle Laithier for her 
artistic talent and her essential contribution to this poster.
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