

RiverSmart Communities

What We Do

- ing MA \$195
- have cost New England billions of dollars and thousands of lives.
- Management obstacles: • Education
- Lack process-based regulatory framework

- RiverSmart Communities Project aims to address these obstacles in the following ways: Assess Needs and Strengths of Communities
- **Determine Best Practices for Process-based Management**
- Produce Outreach and Education Material

Process-Based Management and Fluvial Geomorphology

- Fluvial Geomorphology (FGM): • physical processes shape a river and its features
- FGM Assessments:

Longitudina Profile • Slope

River Features:

- evaluate river processes
- analyze locations and types of change

Floodplain Valley Walls

> **Hydraulics** Vater Flow

A river is made up of physical forms, objects, and processes.

Metrics allow features to be quantified and measured

Assessment protocols vary in their features of interest.

- provide data for long-term, resilient management
- Process-Based Management:
- approaches a river as a series of connected processes

Terrain, Topograph

Soil, Geology

Land Cover

• incorporates FGM assessments

An assessment Protocol integrates river features, assessment methods, and assessment products, to create a tool that addresses specific needs.

Vary in topic of interest, approach, and:

- features assessed
- methods suggested
- spatial scale
- ease of application
- product type

Common Assessment Protocol Topics of Interest

p://www.concord.org/~btinker/GL/web/water/rivers streams.html

Image Altered From TERC

Торіс	Description	Features of Interest	Example Protocols
Habitat	The river's ability to sustain permanent and diverse wildlife populations	 food sources access to spawning areas migratory connectivity shelter availability water quality 	RHS (2003) BURP (IDEQ, 2007) AIP (Moore et al 2008) RBP (Barbour et al 1999) SRMG (KDOW, 2007)
Water Quality	The suitability of the river as a water source for human consumption. The prevention of high sediment yields	 water chemistry microorganism populations turbidity sediment sources 	PSSW (ADEQ, 2012) SIH (USFS, 2009) USM (USACE, 2007)
Fluvial Hazards	Delineation of areas where erosion or inundation may threaten life, property, or economy	 slope, profile channel dimensions planform shape bed and bank materials vegetation 	WARSSS (Rosgen, 2007) VTSGA (Kline et al 2003) SEDG (MEI, 2008) GEEHZ (COAWPD, 2013)
Project Design	Definition of hydraulic and sediment transport properties relevant to specific engineering plans	hydrographylithologydebris sources	WARSSS (Rosgen, 2007) SEDG (MEI, 2008)

What You Don't Know Can Hurt You **RiverSmart Communities and the Importance of Fluvial Geomorphology Assessments in Massachusetts**

Christine Hatch, PhD; Noah Slovin, MS; University of Massachusetts Amherst Geosciences

- Remote sensing allows for less expensive, large scale, rapid assessment

- Improvements in remote sensing technologies have created new opportunities.

Data Sources					
Data Type	Source	Resolution	Y		
Field Data (Width)	MA Geological Survey, NEEInc	< 1 meter	2012		
Field Data (Width)	Will Ouimet,PhD. UConn	< 1 meter	2013		
Channel Centerlines	National Hydrography Dataset	1:24K (10m errors)	1944-		
Aerial Imagery (Width)	USGS	< 1 meter	2011,		
Elevation	USGS, National Elevation Dataset	¹ / ₃ Arc-Second (9.07x9.07 m)	1944 -		
Elevation	LiDAR	1x1 m OR 2x2 m	2011,		
	Tools				

Regional Hydraulic Curves

Empirical observations used to build regression

curves relating upstream area and channel slope

Bent and Waite, 2013

to discharge and channel dimensions

Slope

Geometry

Bankfull Width = 15.0418(Drainage Area)^{0.4038} R² = 0.877 EXPLANATION Upper 90-percent prediction interval -- Lower 90-percent confidence interval Lower 90-percent prediction interval Study site

Drainage Area (miles²)

Remote Assessment

Width Estimation

- <u>HGM</u> Large variation based on thresholds. Has potential for improvement.
- <u>Regional Curves</u> do not perform well on wide streams

Further Work

- <u>Complementary Tool Use</u> build on strengths of different tools
- <u>Incorporate Landscape Details</u> mappable features can inform tool parameters • Local changes in geology, land-use, vegetation, etc.
- <u>Deeper Results Analysis</u> spatial patterns in tool performance

Protocol Analysis

UMass

Sample List of River Assessment Protocols

Protocol	Source	Summary		
WARSSS	Rosgen, D. 2007. Watershed Assessment of River Stability and Sediment Supply (WARSSS)	Four-phases classify streams, measure features for channel evolution and sediment models. Guides "natural channel design."		
VTSGA	Kline, M., et al. Various Dates (2003, rev. 2004). Stream Geomorphic Assessment Protocol Handbooks.	Three-phase protocol for watershed planning, hazard mapping. Emphasizes river corridor, is incorporated into state legislation.		
PSWQS	ADEQ Surface Water Section. 2012. Standard Operating Procedures for Surface Water Quality Sampling, Arizona.	Manual of assessment methods, based on Rosgen. Focus is water quality. Part of statewide surface water monitoring program.		
BURP	IDEQ. 2007. Beneficial Use Reconnaissance Program Field Manual for Streams.	Guidance for assessment planning, preparation, fieldwork, and reporting. Focus is biological condition and habitat availability.		
AIP	Moore, K., et al. 2008. Aquatic Inventories Project: Methods for Stream Habitat Surveys, Version 17.1.	Quantifies habitat condition by assigning numeric values to stream, riparian, and valley geomorphic features.		
SIH	USFS. 2009. Stream Inventory Handbook: Level I & II, Version 2.9.	Set of inventory protocols geared towards various watershed management activities. Focus and level of detail are flexible.		
СМА	USACE and USEPA, 2008. Compensatory Mitigation for Losses of Aquatic Resources; Final Rule	Determine requirements to offset impacts. Available for New England, VA, NC, SC, GA, AL, MS, IA, IL, WI, MN, OK, TX, KY.		
SEDG	Mussetter Engineering, Inc. 2008. Sediment and Erosion Design Guide.	Delineates Lateral Erosion Envelope (LEE) using bank retreat equations based on bank material and incision depths.		
GEEHZ	City of Austin Watershed Protection Department, 2013. Guidance on Establishing an Erosion Hazard Zone	Estimates surface and subsurface erosion hazard zones based on future incision and channel migration. Has legislative force.		
Mont- Buff	Montgomery, D. R. and J. M. Buffington. 1998. Channel Processes, Classification, and Response	Energy and mass-balance equations are used to classify reaches, assess condition and predict disturbance response.		
RSF	Brierley, G., & Fryirs, K. 2005. Geomorphology and River Management: Applications of the River Styles Framework	Divides river into Geomorphic Process Zones based on sediment dynamics, remediation aims for best-possible "sustainable river."		
RHS	The RHS Team, 2003. River Habitat Survey in Britain and Ireland: Field Survey Guidance Manual, 2003 version	Applied rapidly by non-experts, scores habitat based on physical stream structure. Conforms to EU Water Framework Directive.		
MQI	Rinaldi, M., et al. 2012. A method for the assessment and analysis of the hydromorphological condition of Italian streams: The Morphological Quality Index (MQI).	Grades habitat from continuity, morphology, vegetation quality. Uses remote sensing. Conforms to EU WFD.		
ARA	Smith, M., et al. 2008. The Active River Area: A Conservation Framework for Protecting Rivers and Streams.	Delineates river corridor susceptible to channel migration based on elevation models.		

Analysis Categories

Relevance	Detail	Applicability	Accessibility	Ease of Use	Output
What is protocol	How detailed are,	How widely	Ability to access,	Time, data,	Utility and clarity
goal? How	and what is	applicable is	instructions,	research input,	of output (maps,
directly related is	resolution of,	protocol (topically,	technology	expertise	text, equations,
it to user goal?	results?	geographically)?	required, etc	required, etc	etc)

Additional References

Bent, G. C., & Waite, A. M. (2013). Equations for Estimating Bankfull Channel Geometry and Discharge for Streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013-5155. Reston, VA: USGS.

Biron, P. M., Choné, G., Buffin-Bélanger, T., Demers, S., & Olsen, T. (2013). Improvement of Streams Hydro-Geomorphological Assessment Using LiDAR DEMs. *Earth Surface Processes and Landforms, 38*, 1808-1821.

Carbonneau, P. E., & Piégay, H. (2012). The Growing Use of Imagery in Fundamental and Applied River Sciences. In P. E. Carbonneau, & H. Piégay, Advancing River Restoration ad Management, Volume 1: Fluvial Remote Sensing for Science and Management (pp. 1-18). Chichester, West Sussex, UK: John Wiley & Sons, Ltd.

Ferreira, M. (2014, December 5). Transect Tool. GIS 4 Geomorphology. Retrieved from http://gis4geomorphology.com

Hohenthal, J., Alho, P., Hyyppä, J., & Hyyppä, H. (2011). Laser Scanning Applications in Fluvial Studies. Progress in Physical Geography, 35(6), 782-

Lane, E. W. (1954). The Importance of Fluvial Morphology in Hydraulic Engineering. Bureau of Reclamation, Engineering Laboratories Division Hydraulic Laboratory Branch. Denver, CO: United States Department of the Interior.

Montgomery, D. R., & Buffington, J. M. (1998). Channel Processes, Classification, and Response. In R. J. Naiman, & R. Bilby (Eds.), River Ecology and *Management* (pp. 13-42). New York, New York: Springer-Verlag New York, Inc.

Rosgen, D. L. (1994). A Classification of Natural Rivers. *Catena, 22,* 169-199.

Vocal Ferencevic, M., & Ashmore, P. (2012). Creating and Evaluating Digital Elevation Model-Based Stream-Power Map as a Stream Assessment Tool. *River Research and Application, 28, 1394-1416.*

Acknowledgements

Special thanks to Will Ouimet (University of CT), Pascale Biron & Guénolé Choné (Concordia University), Mariane Vocal-Ferencevic & Peter Ashmore (University of Western Ontario), Steve Mabee & Joe Kopera (MA Geological Survey), John Field & Nic Miller (Field Geology Services), Robin MacEwan (Stantec) & Alex Hackman (MA DER), my thesis committee Dave Boutt, Noah Snyder, & Jon Woodruff, and of course, my advisor Christine Hatch (UMass Amherst, UMass Extension), for providing datasets, ArcGIS tools and scripts, guidance, and support.