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FIELD EVIDENCE

Field mapping has yielded previously unrecognized geometries of Miocene-age growth faults whose coeval formation
supports the hypothesis of a crustal-scale Riedel shear formed by dextral transtension:

* Fault geometries of NNR southern basins contain primary ~340° east and west boundary faults (GMC, Mule Canyon,
Dunphy Pass, & Red Devil).

* Basins contain primary ~060°-070° north and south boundary faults (Argenta Plateau, Horse Heaven, Fire Creek, &
Black Rock Canyon.

* Basins contain secondary ~300°-320° (Argenta Point & Beacon Light faults) & 0°-020° faults that often serve as relays
linking 340° oriented structures. These are frequently the preferred pathways for epithermal veins.

I ORDER “The Fire Creek Fractal”
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The fossilized northern Nevada rift (NNR) presents a unique opportunity to investigate multi-scale fault network con-
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zone, area of deformation
accommodating displacement
between two bodies.
R: Riedel Shear, occur at an
angle of ~+15°.
R’: Conjugate Riedel Shear,
occur at an angle of ~+75°.
T: Tension fractures, form at an
< angle of ~+45°.
- P: P-shear, occur at an angle of
~15°.
Y: Y-shear, synthetic slips form
parallel to PDZ.

plan view of clay Riedel dextral shear

ABSTRACT Reidel Shear Mech_arlls and CorltroIYs on Fluid Migration

Figure 3 Riedel shear outline. Left: PDZ: Principal displacement

5
XX
SRS

S
::o
e
:X‘X 0.
RKHKS
&

trols on hydrothermal fluid pathways of low-sulfidation epithermal systems. Evidence suggests that structural controls
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model with all related internal structures

0%
SIS
5L
AN
<)
X
QS

KRR
:0
K5
X

NN
AN
/'
‘/
i &
PSS
e
&S
X

at all scales directly influenced when and where a series of genetically related Au-Ag epithermal deposits formed with- developed. Right: components of a
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in the rift. Field observations indicate the southern half of the NNR formed a series of five half graben basins, aligned Riedel shear defined. Opposite orienta-
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tion of internal structures to be devel-

on a 340° trending axis. All basins have ~340° striking, E-dipping, boundary fault systems on their western margins.
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E-dipping boundary faults work in concert with incipient, parallel, W-dipping boundary faults on the eastern basin mar-

take-aways are that Riedel shear sys- When all the structures, with both variable displacements and shear zone widths are aggregated into a comprehensive
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gins. W- and E-dipping dip-slip boundary faults commonly display apparent dextral offset, are linked by ~50°-70° strik-
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tems coevally form related structures in

NNR architecture, they form a multi-scale spectrum of Riedel shear zones. We have grouped fault zones into the follow-
ing terms describing the width of their respective PDZ’s; 1st Order (100-10kms), 2nd Order (10-1kms), 3rd Order (1km-
100m), 4th Order (100m-10m), 5th Order (10m-1m), 6th Order (cm’s), & 7th Order (mm’s).

1st to 2"d ORDER PDZ

tures. i i ,
bound by the primary boundary fault in the hanging wall and its conjugate on the footwall. Mechanically the conjugate - i " - PDZ Figure 7 Oblique view to the southeast of the field area with the primary basin bounding faults. Multiple orientations of coevally forming struc- "Mantle” Rocks
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Figure 4 Time series of Riedel shear development in gypsum (after GUtech@oman) and associated block models (modified from Fesson, tures indicate a dextral sense of transtension across the NNR corridor. Below, cross section through multiple field mapping areas. = DG, ;

; deformed
normal faults form subvertical Riedel shear zones that focused hydrothermal fluid flow. Geometries of dike swarms : , — /'q“a-“zb"a”d
y 2010). 1) Initial shattering of medium to form minimal displacement Riedel shears. 2) Initial linking of shears by Y-slips, and development of a I Argenta & Malpais Rims | [ Viek a8a : B S = N |

ing dip-slip faults that frequently display sinistral offset. Collectively, the faults accommodated asymmetrically subsid- predictable orientations of faults at all
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scales and types, be it normal, dip-slip

ing blocks to form volcanic depocenters and the basin architecture suggest extension occurred with a slight dextral

09
X

occur at the intersection of Y-slips and R’
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e
- - % ¥
e - . 1
" L 3 =
i
o \
e s ¥
& o Py
-\ o R K,
1 vl £ ¥ = b7 AT g
. ‘ k + ] 4
¥ . N \ i A\ .
X ‘ . Fl \ e @ . L
- . A | o et ¥ \
- % = ) . F
o (| LR 8 :
= = o [ y ¥ X \
. \ T - i 5 A
- i hy - x gt = e 5 AR
d » g R e
| i i
L g . i )
| ]
" d 3

%
2

or reverse and fault relays nucleate
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motion across the ~40 km-wide NNR, consistent with the expected motions of coevally forming structures in a Riedel
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upon the intersections of early struc-
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shear model. The Mule Canyon and Fire Creek deposits are located in similar structural settings in horse blocks iy
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Fire Creek (this study)
Saunders etal., 2016

Ehosghone Point, Dunphy Pass, Water Canyon, |
> Canyon, and Fire Greek

and veins at both deposits suggest that linkages between conjugate normal faults, manifested as surficial relay-ramps,

Mule: Canyon, a

clear PDZ. 3) Forming a through going fault through linkage via connection of individual faults by a relay nucleated at the intersection of an Ll S

o -

Tob - Basalt (14.7 + 0.8 Ma)

serve as high flux fluid conduits. Steeply plunging ore shoots and kinematic indicators at Fire Creek suggest dip-slip

early R-shear and Y-slip. 4) Well developed fault zone with single through going fault. 5) Preferential fluid pathways.
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Stricture Strdctur
vations of coseismic deposition of Au-Ag-bearing bands within veins, suggest that fault kinematics and resulting shear 2 4 ¥

motion on faults formed plunging Riedel shear fabric that channelled fluid flow along individual vein systems. Obser-
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+4tem. Vein structure and texture reflects coseismic formation from the 5t Order to the 7" Order scale.
Cu isotopic studies with colloidal textures strongly indicate mantle sourcing of Au-Ag.
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fabric were essential in channelizing the flow of Au-Ag-bearing fluids to the epithermal environment at all scales.
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Results from this study suggest that the fractal nature of shear fabrics may play a key role in understanding the

Thi - Basalt instrusion (16.4 £ 0.4 Ma)

Tg - Eocene-Oligocene gravels
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dynamic interaction of structural development, seismicity and fluid flow in extensional environments.

Fundamentals of brittle rock mechanics influence the structural
fabric from the crustal scale down to the microscopic. At each
stage a repeating pattern of intersections between R- and R'’-
\ shears with Y-slips nucleates fault relays, the structural high-flux
conduits that enable fluid migration across through-going struc-
tures. By documenting and interpreting the fractal Riedel shear

/ / “ . ¥ ,..:_.,«;.-ﬁ by 178 GaRul % *; X : Wb E fabric one can infer where fluids will travel th rOUgh the crust.
S Fig uthern portion of the northern Nevada rift with identifiable major structures controlling basin subsidence during the mid

Miocene. Coevally active structures are interpreted to be the manifestation of a rift-scale transtensional shear zone that influenced not only the
; formation of the basins but also the ascent of magma and hydrothermal fluids. Right, proposed mechanism controlling the location of the Mule
/ Canyon low-sulfidation deposit.

Keywords, Riedel shear, low-sulfidation epithermal, fractal, mineralizing system, coseismic

INTRODUCTION

NW USA Neogene geology is a combination of magmatism-volcanism in relation to plate margin tectonics. Three com-
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ponents are of interests, 1) Sublithospheric migration of the Yellowstone hot spot (YHS) mantle plume thermally weaken-
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influence on fluid migration.
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face expressions as dike swarms and eruptions
(Columbia River Basalts - CRB, Picture Gorge - PG,

Modoc Plateau - MP and northern Nevada rift).
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tains all downstream flow akin to PDZ of shear zone.

Levee system segregates flow to either side akin to a

through-going fault slip. Right, lock along levee is pas- Cenozoic

Mesozoic

Structural lineaments represented by blue lines of
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magnetic anomalies (Ponce, 2002). Major tectono- CRATO

: other akin to a fault relay in a PDZ.
volcanic structural features are the Oregon-ldaho McDermitt =/
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wide PDZ and >500 kms long. Crustal-scale . 2
fluid conduits formed and manifested as rift e
basins, that create a epithermal mineral belt. |

2nd Order PDZ (10-1km): 15t Order Y-slips form basin-

bounding faults that partition regional stresses into 2"d Order
PDZs. Where conjugated they from compartmentalized shear
zones that are the primary crustal-scale pathways for ascending
hydrothermal fluids creating epithermal mineral districts.

3'd Order PDZ (1km-100m): R and R’ shears within 2" Order {—
PDZ’s are manifested as conjugate antithetic faults on rider

blocks that further partition stress in 3" Order PDZs. These
structures create fluid conduits on the deposit scale.

4th order PDZ (100m-10m): Individual fault zones on the map
or outcrop scale that control fluid pathways on a pit or stope
scale.

5th Order PDZ (10m-1m): Formed by individual fault slips with-
in a 41" Order PDZ that often or controls for fluids on a individual

CAPE RIFTS

Laurentia (0.6 - 0.8 Ga) after Lund (2008). Base NV * Close time-space association between the northern Nevada rift (NNR) and low-sulfidation epithermal deposits.

map modified from Camp and Ross (2004) and

3 7 MALVINAS PLATEAU

Rift orientation * Mechanism(s) by which the NNR'’s development on a multiple scales influenced where and when individual low-sulfidation

ACCRETED
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TERRANES Arch trace

Figure 12 Map of the Earth with the rift systems outlined and grouped by the Eon of formation, modified form Bugsby & Ingersoll, 1995.

DISCUSSION

Field documentation of basins, growth fault networks and low-sulfidation epithermal deposits within the southern portion of the

epithermal deposits formed has not been determined.

Through going fault slips | &
overlap at relay ramps. | ., ;

mantleplume.org. Below, sequential steps of the

Transform zone

early stages of hotspot related active rift develop- 1) Is there a multi-scale structural architecture related to crustal-scale tectonics that is identifiable and documentable? 2) Does
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— |Figure 8 Shears zones formed by conju-

| gate basin bounding faults (e.g. GMC and
Muleshoe faults) where Riedel shears

form antithetic faults in horse block (rider
block at western basin margin) that serve
as conduits for ascending hydrothermal
fluids to cross between the maximum dis-
placement faults that are likely the deep
taps for mineral bearing fluids. Field evi-
dence suggest the location of Mule Can-

yon and Fire Creek were controlled by 2"d
Order Riedel shears. Individual veins at
both sites are compartmentalized between
3"d Order PDZs, with each vein represent-
ing 3" Order Riedel shears. Upon close
inspection veins form individual 4" Order
PDZ’s controlling fluid migration on an out-
_ crop scale.

0.704 Sr 0.706 Sr

Transfer zone

the structural architecture influence hydrothermal convection and the time-space relationships where epithermal deposits form?

HYPOTHESIS

This study hypothesizes that predictable controls on fluid migration caused by shear zone geometries influence all scales of

ment that were fossilized during the mid Mioecene

after Sengor (1995).Step 1 is marked by lithospheric axial dikes___

doming and axial volcanism, step 2 by ~120° NNR suggest that the hydrothermal fluids exploited a multi-scalar Riedel shear structural fabric. Evidence suggest that hydrother-

spaced axial dike swarms and early rift faulting, and mal fluids are channelized within PDZ'’s (of all scales) by through going structures which act as barriers. The migrating hydrother-

Incipient axial

rift valley e
basin margin “~----

dikes

step step 3 by bi- or tri-axial rift valley formation. mal fluids take advantage of fault relays between through going structures to migrate across. By identifying the volumes of rock

hydrothermal fluid flow, extending from the crustral-scale down to the individual vein-scale. The root cause for shear zone geom-

that host fault relays (at all scales) one can vector to the highest flux pathways of fluid migration. In the epithermal environment

e etries is thought to be heightened dextral transtensional deformation across the NNR region during the mid Miocene. This

these are often the host to either ancient low-sulfidation deposits or modern geothermal reservoirs.
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axial propagation

Plate Margin Stress Partitioning - Dextral Transtension Across the B & R

Figure 2 Right, horizontal vectors of GPS stations in western USA

heightened activity was driven by thermal weakening of the crust enabling plate boundary stresses to rapidly form a linear rift

basin system during a ~2Myr period that was subsequently fossilized. This study hypothesizes that rift architecture consist of

multiple fault fabrics, at orientations that relate to predictable dextral Riedel shear geometries, that formed coevally and likely

modified from John, 2003

Order PDZs that create high-flux fluid pathways on a vein scale
and high-grade nodes.

7th Order PDZ (mm): Riedel shear fabric internal to a 6! Order

PDZ forms micro-faults on the 7t Order scale whose displace-
ment is preserved in the multi-stage growth of collorm bands in
veins.

influenced hydrothermal fluid pathways. 3P0z

from EarthScope’s Plate Boundary Observatory network

\H
vein scale. i
6th Order PDZ (cm): Formed by synthetic Y-slips internal to 5%

P
3d pPDZ 2nd PDZ (GMC-Muleshoe fault)

2nd PDZ (GMC-Muleshoe fault)

Hypothesized PDZ: ~340° orientation of axis of rift system subparallel to plate margin
geometries: Y: ~340° orientation of Y-shears, synthetic slips that form major basin bounding
faults on western and eastern margins.
R: ~0° orientation of Riedel shears, tforms secondary faults linking Y-slips
I: ~20-30° orientation of tension fractures, forms secondary faults
R’: ~560-70° orientation of conjugate Riedel shears, forms primary basin bounding
faults at northern and southern margins with apparent sinistral offset.
P: ~300-320° orientation of P-shears, forms secondary faults linking Y-slips.
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Range (B&R) until Idaho. Decreasing velocities would result that Plan View

fault scarps of breached relay ramp form p. 445-503.

would result in a dextral-sense stress across laterally adjacent ter- hotsprings or hydrothermal eruptive craters
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rains. Bottom, time slice map of Basin & Range extension at 22 Ma

and 0 Ma after Bird (2002). Significant increase occurs during mid-
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