The Geomorphology of the Pig Point Site (18AN50) Landform Development, Climate Change, and Long-Term Human Occupation

DON MULLIS – TETRA TECH STEPHANIE SPERLING – ANNE ARUNDEL COUNTY LOST TOWNS PROJECT

DR. FRANK VENTO - CLARION PENNSYLVANIA UNIVERSITY DR. AL LUCKENBACH – ANNE ARUNDEL COUNTY LOST TOWNS PROJECT JAMES MARINE, ED DOLAN – TETRA TECH

Site Background

Source: Dr. Al Luckenbach – Anne Arundel County Lost Towns Project

Figure 1 – Site Location Map (Pig Point – 18AN50)

Patuxent River, Maryland

Site Background

- Site initially recognized in 2008, with field excavations 2009 to 2015
- 149 5-ft square units documented 365 features, 630,000 artifacts, 30 c-14 dates which spanned nearly 10,000 years
- Three distinct areas excavated:
 - Lower Block
 - Upper Block
 - North Block

Site Map with Lidar-Derived DEM (ESRI)

Site Background

- Lower Block "Feasting Area"
 - Contained Woodland period midden
 - Stratified in situ Early, Middle, and Late Archaic cultural deposits
 - Cultural deposits extended to over 6 ft (2 m) below grade
- Upper Block "Habitation Area"
 - Intact stratigraphy from Late Woodland to Early Archaic
 - Thousands post-holes marking outlines of "wigwams"
- North Block "Ritual Area"
 - Rare Adena-influenced mortuary pits

Pig Point 18AN50 Projectile Point Types

Projectile Points – Over 500 Complete

No Major Data Gaps

Lower Block – Depth (over 6 ft of Cultural Deposits) – Why?

Source: Dr. Al Luckenbach - AA County Lost Towns Project

Need for Additional Scientific Disciplines in Geology and Geomorphology

Geomorphological Investigation

Development of a Site Conceptual Model

Multiple Lines of Evidence

Geology

- Patuxent River Valley Terrace Deposits
 - Mapped as Pleistocene
 - Interbedded sand and gravel
 - Lesser amounts of Silt/Clay
 - Quartzose gravel typically concentrated in lower portion
 - Cobbles and boulders of mafic rock
 - Limonite conglomerate
 - Glauconitic Sands

Source: MGS – Anne Arundel County Geologic Map

Synthesis on Quaternary aeolian research in the unglaciated eastern United States

Helaine W. Markewich^{a,*}, Ronald J. Litwin^b, Douglas A. Wysocki^c, Milan J. Pavich^b

^a U.S. Geological Survey, 1770 Corporate Drive, Suite 500, Norcross, GA 30093, USA

^b U.S. Geological Survey, 12201 Sunrise Valley Drive, MS 926A National Center, Reston, VA 20192, USA

^c National Soil Survey Center, 100 Centennial Mall North, Room 152, MS 34, Lincoln, NE 68508, USA

Dune Fields

- Infilled parabolic
- Medium Sands
 (0.25-0.50 mm)
- NW to SE Trending Ridge lines

Desktop Study

Regional Map – Source Bordering Dune Aeolian Topography

ESRI GIS Mapping - LIDAR

Relic Aeolian Conditions Determined by Soil Survey Data

Riverine dunes on the Coastal Plain of Georgia, USA

Andrew H. Ivester^{a,#}, David S. Leigh^b ^aDepartment of Gensciences, State University of Wart Georgia, Carrollon, GA 19118-1100, USA ^bDepartment of Geography, The University of Georgia, Monte, GA 19602-2502, USA Received 8 June 2001; received in revised from 31 July 2002; accepted 2 August 2002

11

In Field - Data Collection

Data collection:

- Soil sampling from open excavations
- Hand auger sampling at bottom of archeological units and in near-by strategic areas

Data Collection – Soil Sampling and Completion of Hand Augers

Typical Digital Photograph of Sediments

Limonite ?

Glauconite

Iron Stained Quartz

Typical of Patuxent River Terrace Deposit Sediments

Digital Photography of Sediments

1 mm

Potential Climate Change Events?

3D Stratigraphic Modeling (Site Specific)

Pig Point - Lower Block

Document multiple climate-driven erosional and depositional cycles

Soil Profile Analysis

Multiple A horizons, A/E transition, series BC horizons, C1/C2 fluvial gravel 16

Highest % in Medium Sand Fractions

 (M_{σ}) : (σ_{s}) : (Sk_{s}) : (K_{σ}) :

Table 2 - Particle Size Analysis Summary (Coulter Counter < 2mm)

											(2) -	(- //	((G).
			Total (<2 mm) (%)			Sand fraction		ions (2-0.05 mm) (%)			Folk and Ward Method (Phi)			
Sample Location	Sample Depth (ft)	N	Clay	Silt	Sand	vfs	fs	ms	cos	vcos	Mean	Sorting	Skewness	Kurtosis
Lower Block - Above Gravel	1 to 5.5 ft BGS	10	3.7%	13.3%	83.0%	6.6%	15.3%	37.3%	20.3%	3.4%	2.2	2.1	0.6	1.8
Lower Block - Transitional	6.0 to 6.5 ft BGS	2	2.9%	12.7%	84.4%	5.7%	12.0%	33.3%	23.0%	10.3%	1.9	2.1	0.5	1.9
Lower Block - With Gravel	7.0 to 8.5 BGS	4	3.7%	14.7%	81.6%	5.9%	12.2%	32.8%	24.0%	6.8%	2.2	2.3	0.5	1.7
North Block - Above Gravel	0.2 to 5 ft BGS	18	4.1%	14.5%	81.4%	6.7%	15.7%	40.0%	17.2%	1.8%	2.4	2.1	0.6	1.7
North Block - With Gravel	7 to 13 ft BGS	6	1.6%	4.6%	93.8%	2.2%	7.3%	33.6%	33.9%	16.8%	1.0	1.3	0.2	1.7
Upper Block - Above Gravel	1 to 1.5 ft BGS	2	4.6%	16.2%	79.2%	5.8%	12.1%	37.4%	20.8%	3.1%	2.5	2.4	0.6	1.8

Higher % of C and VC Sands

Higher % of VF and F Sand

Coulter-Counter Grain Size Analysis – <u>42 Samples</u>

Coulter-Counter Grain Size Analysis – Relic Aeolian vs Fluvial Coarse Gravel

Pig Point (18AN50) - Lower Block Sediment Acculation Rates (mm/year) (Based on C-14 Results and Stratum Thickness)

Sediment Accumulation Rates and Climate Change

Lower Block

Relationship between Upslope vs Downslope (Lower Block) All Artifacts Normalized per Unit

Sediment Accumulation Rates and Climate Change

Human Occupation of Pig Point

Climate Change and Long Term Human Occupation

Cultural Periods/C-14/Stratum/Climate Correlation Chart

Summary – Correlation Chart

(a) Alluvial deposition of basal Pleistocene terrace sand and gravel deposits and Late Pleistocene deposition of active source-bordering aeolian dunes from braid-plain river sediments

(b) Terrace scarp erosion during the warm, wet interstadial culminating in the cool and dry Younger Dryas

Geomorphic Landform Development

(c) Increased erosion and colluvial over-printing (increased mass wasting) of up-gradient aeolian sands with enhanced activity in the Middle Archaic "hypsithermal"

(d) Landform stability and development of a cumulic A horizon with anthropogenic enrichment during the stable Sub Atlantic through Neo Atlantic (Early and Middle Woodland periods) and additional colluvial over-printing by accelerated mass wasting from the Little Ice Age through historic deforestation (Late Woodland and Historic periods)

Special Thanks

- Stephanie Sperling Anne Arundel County Lost Towns Project
- Dr. Frank Vento Clarion Pennsylvania University
- Dr. Al Luckenbach Anne Arundel County Lost Towns Project
- James marine, Ed Dolan Tetra tech

Geomorphic Landform Development