The space of sampled ancestor trees @GSA2016

---- zürich

22277

Joint work with Alexei Drummond, the University of Auckland, NZ, Erick Matsen and Chris Whidden, Fred Hutch Cancer Research Center, Seattle, WA, USA

September 28, 2016

• General statistics is at least 5 years ahead of phylostatistics.

- General statistics is at least 5 years ahead of phylostatistics.
- The discrete component of tree space is *the* bottleneck for tree search algorithms.

- General statistics is at least 5 years ahead of phylostatistics.
- The discrete component of tree space is *the* bottleneck for tree search algorithms.
- What's wrong with trees?

- General statistics is at least 5 years ahead of phylostatistics.
- The discrete component of tree space is *the* bottleneck for tree search algorithms.
- What's wrong with trees?

Same as above but with a mortarboard on

- MCMC algorithms
 - Improving efficiency = smart proposals
 - Point estimates AKA posterior summary
- Tree search methods in general
 - Semi-convergence
 - Valleys
 - Terraces

Sampled ancestor tree

Sampled ancestor tree graph

Graph = Metric space

Graph = Metric space

Answer

• Over 25 years to solve the complexity problem!

Answer

- Over 25 years to solve the complexity problem!
- Over 7 erroneous "solutions" published on the way!

Answer

- Over 25 years to solve the complexity problem!
- Over 7 erroneous "solutions" published on the way!

I'm talking about the NNI graph here.

What is actually "wrong"

Sampled ancestor trees (the SANNI graph) free from all these (G, Whidden, Matsen. bioRxiv, 2016)

- Split Theorem. Tick.
- Merge and sort trick. Tick.

Sampled ancestor trees (the SANNI graph) free from all these (G, Whidden, Matsen. bioRxiv, 2016)

- Split Theorem. Tick.
- Merge and sort trick. Tick.

Even more good news

Efficient approximate algorithm for computing shortest SANNI-paths.

What about branch lengths?

Looks like a problem

Trees have different dimensions

Branch lengths are fine too!

Branch lengths are fine too!

*by putting non-zero probability mass onto facets of the space

What we've done

- Introduced the SANNI graph on ranked sampled ancestor trees (to the best of our knowledge)
- Sampled ancestor trees and classical phylogenetic trees have different geometric and algorithmic properties
- Often, geometric and algorithmic results for classical trees do not scale to sampled ancestor trees
- Natural and efficient data structures
- Connections to other areas of math

What we've done

- Introduced the SANNI graph on ranked sampled ancestor trees (to the best of our knowledge)
- Sampled ancestor trees and classical phylogenetic trees have different geometric and algorithmic properties
- Often, geometric and algorithmic results for classical trees do not scale to sampled ancestor trees
- Natural and efficient data structures
- Connections to other areas of math
- \bullet Failed to prove that SANNI is $\operatorname{NP-hard}$

References

Li, Tromp, and Zhang Some Notes on the Nearest Neighbour Interchange Distance. <i>Computing and Combinatorics</i> , 343–351, 1996.
Dasgupta, He, Jiang, Li, Tromp, and Zhang On Computing the Nearest Neighbor Interchange Distance Discrete Mathematical Problems with Medical Applications, Vol. 55, 2000.
Alex Gavryushkin and Alexei Drummond The space of ultrametric phylogenetic trees Journal of Theoretical Biology, Vol. 402, 197–208, 2016
Alex Gavryushkin, Chris Whidden, and Frederick A. Matsen IV Combinatorics of discrete time-trees: algorithmic insights and open problems $bioRxiv$, 2016 \leftarrow available as a blog post by Matsen
https://github.com/gavruskin/tauGeodesic
https://github.com/gavruskin/tTauCurvature

