Intracrustal magmatic heat advection in the Ediacaran UHT domain of southern Madagascar

> Robert M. Holder Bradley R. Hacker University of California, Santa Barbara

Geological setting

Limits on our understanding of Madagascar

1: uncertain PT path

4-11 kbar 700-1050 °C

Limits on our understanding of Madagascar

Overview

- test the proposed models for UHTM in Madagascar...
 - radiogenic heat production in thick crust
 - magmatic heat advection
 - increased mantle heat flow following delamination
- ... with thermobarometry (pseudosections, Zr in rutile, and ternary feldspars)

& monazite petrochronology

 equilibrium assemblage

• Zr in rut

Horton et al.
 (2016)

• Al in opx

cordierite + biotite in garnet

low-pressure prograde path

decompression reactions: g + q = pl + opx

Spinel-garnet leucogneiss

Spinel-garnet leucogneiss

Garnet leucogneiss

Garnet leucogneiss

Garnet leucogneiss

two-feldspar min. temperatures: > 915 ± 30 °C

solution model & method of Benisek et al. (2010)

Osumilite gneiss

Osumilite KMg₂Al₅Si₁₀O₃₀

experimental stability > 850 °C, < 8.5 kbar

Carrington and Harley (1995) Das et al. (2001)

osumilite

Kfs-crd-q(-opx-bt)

Osumilite gneiss

equilibrium assemblage

925–1010 °C 4.0–6.5 kbar

New thermobarometry

- 900-1050 °C, 4.5-6.5 kbar
 - low-pressure prograde path
 - ~isobaric cooling

monazite inclusions in osumilite pseudomorphs

monazite inclusions in osumilite pseudomorphs -max. date for osm growth (T ≥ 850 °C)

monazite in leucosomes at osumilite outcrop -date of leucosome crystallization (T ≤ 925 °C)

Metamorphic timeline

Comparison with radiogenic-heating models

Comparison with radiogenic-heating models

isobaric heating & < 2 kbar decompression during cooling

consistent with advective heat source...

...is there other evidence?

Metamorphism & magmatism

• late-magmatic dates, regional cooling

Metamorphism & magmatism

Anosyen Batholith: just before/during peak T

Anosyen Batholith

Anosyen Batholith

- Nd isotopes (Paquette et al., 1994)
 - remelting of Paleoproterozoic /Neorchean crust
 - <u>intracrustal</u> magmatism & heat advection

Anosyen Batholith

minor gabbro & associated monzonite

component of mantle heat & mass

possible genetic relationship

Conclusions

- How did the UHT rocks in Madagascar get so hot?
 - even high radiogenic heat production is not enough to produce UHT rocks in Madagascar
 - PT paths suggest an advected component
 - high-temperature
 crustal melts may be
 responsible
 - some component of mantle involvement

monazite inclusions in osumilite pseudomorphs -max. date for osm growth (T ≥ 850 °C)

monazite in leucosomes at osumilite outcrop -date of leucosome crystallization (T ≤ 925 °C)

