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Geological setting





Limits on our understanding of Madagascar

1: uncertain 
PT path

4-11 kbar

700-1050 oC



Limits on our understanding of Madagascar

1: uncertain PT 
path

2: no PT-time 
data

timing of peak 
(P)T unknown

(Tucker et al., 2014)



Overview

• test the proposed models for UHTM in 
Madagascar…

– radiogenic heat production in thick crust

– magmatic heat advection

– increased mantle heat flow following delamination

• … with thermobarometry (pseudosections, Zr in 
rutile, and ternary feldspars)

& monazite petrochronology



Garnet-orthopyroxene-cordierite gneiss



Garnet-orthopyroxene-cordierite gneiss

• equilibrium 
assemblage

875–975 oC

~6.5 kbar



Garnet-orthopyroxene-cordierite gneiss

• equilibrium 
assemblage

• Zr in rut
– Horton et al. 

(2016)

• Al in opx



Garnet-orthopyroxene-cordierite gneiss

cordierite + 
biotite in garnet

low-pressure 
prograde path 



decompression 
reactions:

g + q = pl + opx

Garnet-orthopyroxene-cordierite gneiss



preservation of peak 
cordierite & garnet

both minerals 
stable at solidus

~isobaric cooling

Garnet-orthopyroxene-cordierite gneiss



Spinel-garnet leucogneiss



Spinel-garnet leucogneiss

equilibrium 
assemblage

960–1050 oC

4.5–6.5 kbar



Garnet leucogneiss

equilibrium 
assemblage

consistent with

Ca in garnet (GASP)



Garnet leucogneiss

spinel + quartz
= sillimanite + garnet

retrograde biotite
no cordierite

~isobaric cooling



Garnet leucogneiss

two-feldspar min. temperatures:     > 915 ± 30 oC

solution model & method of Benisek et al. (2010)



Osumilite gneiss



Osumilite KMg2Al5Si10O30

Kfs-crd-q(-opx-bt)

osumilite

2 mm

experimental stability
> 850 oC, < 8.5 kbar

Carrington and Harley (1995)
Das et al. (2001)



Osumilite gneiss

equilibrium 
assemblage

925–1010 oC

4.0–6.5 kbar



New thermobarometry

• 900-1050 oC, 4.5-6.5 kbar

– low-pressure prograde path

– ~isobaric cooling



Timing of peak metamorphism

monazite inclusions in osumilite pseudomorphs

2 mm



Timing of peak metamorphism

monazite inclusions in osumilite pseudomorphs

-max. date for osm growth (T ≥ 850 oC)



Timing of peak metamorphism

monazite in leucosomes at osumilite outcrop

-date of leucosome crystallization (T ≤ 925 oC)



Timing of peak metamorphism

duration of UHT < 16 ± 2.5 Myr

T ≥ 850 oC T ≤ 925 oC



Metamorphic timeline



Comparison with radiogenic-heating 
models

prograde 
metamorphism 
~60 Myr

radiogenic 
heating alone 
not enough

Madagascar

> 100 oC hotter



Comparison with radiogenic-heating 
models

isobaric 
heating &
< 2 kbar
decompression
during cooling

consistent with 
advective heat 
source…

…is there other 
evidence?



Metamorphism & magmatism

• late-magmatic dates, regional cooling



Metamorphism & magmatism

• Anosyen Batholith: just before/during peak T



Anosyen Batholith
possible advective heat source

• emplaced just before/ 

during peak T

“charnockites”



Anosyen Batholith

anhydrous,

orthopyroxene-
phenocryst

granites

“charnockites”

emplaced

> 1000 oC

likely > 1100 oC



Anosyen Batholith

• Nd isotopes (Paquette et al., 1994)

– remelting of Paleoproterozoic 
/Neorchean crust

– intracrustal magmatism & 
heat advection



Anosyen Batholith

minor gabbro & associated 
monzonite

component of mantle heat & mass

possible genetic relationship



Conclusions

• How did the UHT rocks in Madagascar get so hot?

– even high radiogenic heat production is not enough to 
produce UHT rocks in Madagascar

– PT paths suggest an advected component

– high-temperature 
crustal melts may be 
responsible

– some component of 
mantle involvement





Timing of peak metamorphism

monazite inclusions in osumilite pseudomorphs

-max. date for osm growth (T ≥ 850 oC)



Timing of peak metamorphism

monazite in leucosomes at osumilite outcrop

-date of leucosome crystallization (T ≤ 925 oC)


