Water-Quality Issues Related to Uranium In Situ Recovery Sites

Raymond H. Johnson¹, James Stone², Ryan Truax², Martin Dangelmayr², Paul Reimus³, and James T. Clay⁴

¹Navarro Research and Engineering, Inc., Contractor to the U.S. Department of Energy Office of Legacy Management

²Department of Civil Engineering and Environmental Engineering, South Dakota School of Mines and Technology

³Los Alamos National Laboratory

⁴Power Resources, Inc.

Geological Society of America Denver, Colorado • September 25–28, 2016

Uranium Roll Front: Formation

In Situ Recovery (ISR) Process

Groundwater Quality Issues

- Aquifer outside of the ISR zone could be used for:
 - Agricultural irrigation
 - Livestock water
 - Drinking water
- U.S. Environmental Protection Agency (EPA) requirement: No change in groundwater quality outside of the aquifer exemption boundary

Groundwater Quality Issues: Reality

- Restoration to full, pre-ISR water quality is difficult because:
 - The ISR process has significantly altered the solid phase
 - Aquifer heterogeneities limit restoration efficiency
- Past ISR closures
 - Some went to "class-of-use"
 - Sometimes 1 year or less of monitoring
- Proposed EPA regulations
 - 3 years of monitoring in conjunction with geochemical modeling
 - 30 years of monitoring

Stakeholder Interest and EPA regulations

- Determine "no impact on downgradient water quality" before ISR development or closure
 - Future rock-water interaction
- Focus on downgradient water quality
 - Appropriate data collection (rock and water)
 - Applicable laboratory and field testing
 - Predictive reactive transport modeling
- Pre-ISR data
 - General site knowledge
 - Core collection
 - Batch testing
 - Column testing
 - Reactive transport modeling

Empirical Data and Parameters for Modeling

- Contaminant sorption/desorption
 - With changes in geochemistry along the groundwater-flow path due to rock-water interaction
- Contaminant precipitation/dissolution
 - With changes in geochemistry along the groundwater-flow path due to rock-water interaction
- Dual porosity mechanisms (long tailing affect)
 - Geologic layering
 - Fractured rock, or
 - Large grain size distributions

General Hydrogeology

- Geology (rock)
- Groundwater flow directions and velocity (water)

Current Groundwater Flow Direction

Collect Core

Characterize the mineralogy

Organic bands with minor deformation

Core is mostly well-sorted, massive, medium-grained gray sandstone with localized organic zone

627

628 ft

Batch Testing

Vary geochemistry to get sorption and precipitation potential

Example Batch Test Results

Column Testing

Column in a glove box at Los Alamos National Lab

Columns in a glove box at the South Dakota School of Mines and Technology

Also, vary CO₂, alkalinity, and pH to bracket expected site conditions, or later use actual restored-zone groundwater

Column Testing Example Results

Column Testing Example Results (continued)

Reactive Transport Modeling

Post-Restoration Data

- Post-restoration core
- Revisit batch testing
- Revisit column testing
- Field testing
- Revisit reactive transport modeling
- Long-term monitoring data

Post-Restoration Additional Testing: Restored and Downgradient Zones

- Test restored-zone core with background groundwater to produce an evolved background groundwater (long-term groundwater from the restored zone)
- Conduct batch and column tests on the downgradient core with:
 - Unrestored groundwater (worst case)
 - Final restored groundwater (real case)
 - Evolved background groundwater (future case)
 - Background groundwater (best case)

Field Pilot Tests

- Best field-scale data
- Inject and track unrestored or restored-zone water in an ore zone or downgradient zone that will be "overprinted" by future ISR

Conclusions

- Batch tests, column tests, and predictive reactive transport modeling can be done before ISR begins as part of the decision making/permitting process by bracketing possible post-restoration conditions
 - Help address stakeholder concerns
- The best predictions require actual restored groundwater in contact with the downgradient solid phase
- Resulting modeling provides a range of natural attenuation rates and assists with designing the best locations and time frames for continued monitoring
- Field pilot tests are the best field-scale data and can provide the best model input and calibration data

