The University of Mississippi Department of Geology and Geological Engineering, in an attempt to improve student attendance, retention, and performance, tested the use of a web-based Classroom Response System (CRS) in three core geology classes at the freshman, sophomore, and junior level. Students purchased a license to the application, which they could access via their cell phone, tablet, or laptop computer. Quantitative comparisons of attendance, retention, and test performance were made with data from previous, non-CRS graded classes. Classroom attendance is recorded using a web-based system run by the department and monitored by CRS personnel.

Comparison of Geol 106 grade distributions

There was a highly significant change in the mean of grades for 2016 (p < 0.05), showing an overall 19% improvement in the average grade (p-value < 0.05). The number of students missing less than 10% of total classes increased from 48% (2014) and 59% (2015) to 67% in 2016. Grade distributions, which were assumed to be drawn from a normal population, were compared using a 2-sample Kolmogorov-Smirnov test to test the null hypothesis that the samples are drawn from the same distribution. The rejection criterion was a p-value < 0.05.

Comparison of Geol 314 grade distributions

Comparison of Geol 303 grade distributions

Comparison of Geol 303 grade distributions

The positive effect seen in the freshman class suggests that if CRS technology was introduced early in the curriculum, the disparity between results from the freshman and higher level classes suggests that CRS technology should be introduced early in the curriculum. The University of Mississippi Department of Geology and Geological Engineering, in an attempt to improve student attendance, retention, and performance, tested the use of a web-based Classroom Response System (CRS) in three core geology classes at the freshman, sophomore, and junior level. Students purchased a license to the application, which they could access via their cell phone, tablet, or laptop computer. Quantitative comparisons of attendance, retention, and test performance were made with data from previous, non-CRS graded classes. Classroom attendance is recorded using a web-based system run by the department and monitored by CRS personnel.

Comparison of Geol 106 grade distributions

There was a highly significant change in the mean of grades for 2016 (p < 0.05), showing an overall 19% improvement in the average grade (p-value < 0.05). The number of students missing less than 10% of total classes increased from 48% (2014) and 59% (2015) to 67% in 2016. Grade distributions, which were assumed to be drawn from a normal population, were compared using a 2-sample Kolmogorov-Smirnov test to test the null hypothesis that the samples are drawn from the same distribution. The rejection criterion was a p-value < 0.05.

Comparison of Geol 314 grade distributions

Comparison of Geol 303 grade distributions

The positive effect seen in the freshman class suggests that if CRS technology was introduced early in the curriculum, the disparity between results from the freshman and higher level classes suggests that CRS technology should be introduced early in the curriculum. The University of Mississippi Department of Geology and Geological Engineering, in an attempt to improve student attendance, retention, and performance, tested the use of a web-based Classroom Response System (CRS) in three core geology classes at the freshman, sophomore, and junior level. Students purchased a license to the application, which they could access via their cell phone, tablet, or laptop computer. Quantitative comparisons of attendance, retention, and test performance were made with data from previous, non-CRS graded classes. Classroom attendance is recorded using a web-based system run by the department and monitored by CRS personnel.

Comparison of Geol 106 grade distributions

There was a highly significant change in the mean of grades for 2016 (p < 0.05), showing an overall 19% improvement in the average grade (p-value < 0.05). The number of students missing less than 10% of total classes increased from 48% (2014) and 59% (2015) to 67% in 2016. Grade distributions, which were assumed to be drawn from a normal population, were compared using a 2-sample Kolmogorov-Smirnov test to test the null hypothesis that the samples are drawn from the same distribution. The rejection criterion was a p-value < 0.05.

Comparison of Geol 314 grade distributions

Comparison of Geol 303 grade distributions

The positive effect seen in the freshman class suggests that if CRS technology was introduced early in the curriculum, the disparity between results from the freshman and higher level classes suggests that CRS technology should be introduced early in the curriculum. The University of Mississippi Department of Geology and Geological Engineering, in an attempt to improve student attendance, retention, and performance, tested the use of a web-based Classroom Response System (CRS) in three core geology classes at the freshman, sophomore, and junior level. Students purchased a license to the application, which they could access via their cell phone, tablet, or laptop computer. Quantitative comparisons of attendance, retention, and test performance were made with data from previous, non-CRS graded classes. Classroom attendance is recorded using a web-based system run by the department and monitored by CRS personnel.

Comparison of Geol 106 grade distributions

There was a highly significant change in the mean of grades for 2016 (p < 0.05), showing an overall 19% improvement in the average grade (p-value < 0.05). The number of students missing less than 10% of total classes increased from 48% (2014) and 59% (2015) to 67% in 2016. Grade distributions, which were assumed to be drawn from a normal population, were compared using a 2-sample Kolmogorov-Smirnov test to test the null hypothesis that the samples are drawn from the same distribution. The rejection criterion was a p-value < 0.05.

Comparison of Geol 314 grade distributions

Comparison of Geol 303 grade distributions

The positive effect seen in the freshman class suggests that if CRS technology was introduced early in the curriculum, the disparity between results from the freshman and higher level classes suggests that CRS technology should be introduced early in the curriculum. The University of Mississippi Department of Geology and Geological Engineering, in an attempt to improve student attendance, retention, and performance, tested the use of a web-based Classroom Response System (CRS) in three core geology classes at the freshman, sophomore, and junior level. Students purchased a license to the application, which they could access via their cell phone, tablet, or laptop computer. Quantitative comparisons of attendance, retention, and test performance were made with data from previous, non-CRS graded classes. Classroom attendance is recorded using a web-based system run by the department and monitored by CRS personnel.

Comparison of Geol 106 grade distributions

There was a highly significant change in the mean of grades for 2016 (p < 0.05), showing an overall 19% improvement in the average grade (p-value < 0.05). The number of students missing less than 10% of total classes increased from 48% (2014) and 59% (2015) to 67% in 2016. Grade distributions, which were assumed to be drawn from a normal population, were compared using a 2-sample Kolmogorov-Smirnov test to test the null hypothesis that the samples are drawn from the same distribution. The rejection criterion was a p-value < 0.05.

Comparison of Geol 314 grade distributions

Comparison of Geol 303 grade distributions

The positive effect seen in the freshman class suggests that if CRS technology was introduced early in the curriculum, the disparity between results from the freshman and higher level classes suggests that CRS technology should be introduced early in the curriculum. The University of Mississippi Department of Geology and Geological Engineering, in an attempt to improve student attendance, retention, and performance, tested the use of a web-based Classroom Response System (CRS) in three core geology classes at the freshman, sophomore, and junior level. Students purchased a license to the application, which they could access via their cell phone, tablet, or laptop computer. Quantitative comparisons of attendance, retention, and test performance were made with data from previous, non-CRS graded classes. Classroom attendance is recorded using a web-based system run by the department and monitored by CRS personnel.

Comparison of Geol 106 grade distributions

There was a highly significant change in the mean of grades for 2016 (p < 0.05), showing an overall 19% improvement in the average grade (p-value < 0.05). The number of students missing less than 10% of total classes increased from 48% (2014) and 59% (2015) to 67% in 2016. Grade distributions, which were assumed to be drawn from a normal population, were compared using a 2-sample Kolmogorov-Smirnov test to test the null hypothesis that the samples are drawn from the same distribution. The rejection criterion was a p-value < 0.05.

Comparison of Geol 314 grade distributions

Comparison of Geol 303 grade distributions

The positive effect seen in the freshman class suggests that if CRS technology was introduced early in the curriculum, the disparity between results from the freshman and higher level classes suggests that CRS technology should be introduced early in the curriculum. The University of Mississippi Department of Geology and Geological Engineering, in an attempt to improve student attendance, retention, and performance, tested the use of a web-based Classroom Response System (CRS) in three core geology classes at the freshman, sophomore, and junior level. Students purchased a license to the application, which they could access via their cell phone, tablet, or laptop computer. Quantitative comparisons of attendance, retention, and test performance were made with data from previous, non-CRS graded classes. Classroom attendance is recorded using a web-based system run by the department and monitored by CRS personnel.

Comparison of Geol 106 grade distributions

There was a highly significant change in the mean of grades for 2016 (p < 0.05), showing an overall 19% improvement in the average grade (p-value < 0.05). The number of students missing less than 10% of total classes increased from 48% (2014) and 59% (2015) to 67% in 2016. Grade distributions, which were assumed to be drawn from a normal population, were compared using a 2-sample Kolmogorov-Smirnov test to test the null hypothesis that the samples are drawn from the same distribution. The rejection criterion was a p-value < 0.05.