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EMBRYOS “Embryos undergo development;
AND ancestors have undergone
ANCESTORS development, but in their day they
also were the products of
. development.”

SIR GAVIN DE BEER, F.R.S. p. 1(1940)
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Embryos and ancestors
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Motivating questions

What can we say about the embryos and developmental
programs of Archaeocidaris spp.?

What kinds of data are at our disposal?

Can we simultaneously investigate fundamental processes of
development and evolution along the way?



Phylogeny of echinoids

Archaeocidaris s

[X

—=Strongylocentrotidae
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———Cidalidae
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Eucidans fribuloides




What kinds of data can we collect to make
inferences about ancestral embryos?

* Developmental modes

« larval life strategies, e.g. direct v. indirect development

* Celllineages

« clade-specific novelties, e.g. larval skeleton, larval pigment, etc.

* Gene families
 Gene loss, sub- and neo-functionalization of duplicated genes, etc.

* Generegulation

Gene regulatory networks (linkages, circuits), regulatory states (spatial
localization of gene products), etc.

- Common to all of these datasets is the importance of sampling

numerous taxa




What is a gene regulatory network (GRN)?

Gene Regulation
Protein products of genes (e.g.,
transcription factors, signaling
cascades) regulate the production
(transcription) of other genes

Gene Requlatory Network
A wiring diagram representing the
intricate, recursive regulatory
circuitry of gene/protein interactions
in the cell (or the embryo)
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What is a regulatory state (RS)?

Requlatory State A

Euechinoids

Cidaroids

-- The spatial output of
gene regulatory
networks in the

embryo

-- The total set of
regulatory genes
present in a given cell

B)

Skeletogenic
mesoderm (SM)

State
ets1/2

Non-skeletogenic

mesoderm (NSM) delta

Veg2/Anterior
Endoderm (AE)

Veg1/Posterior
Endoderm (PE)

Perianal
Ectoderm

Strongylocentrotus purpuratus (Sp)

Sp Regulatory

Common Regulatory

State

alx1

myc,
gcm, gatae

gatae, blimp1,
foxa, myc

bra, hox11/13b,

eve, wnt8

eve, wnt8

Eucidaris tribuloides (Et)

Et Regulatory
State
delta

ets1/2

hox11/13b
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Comparative analyses in echinoderms

,———> Chordates
Hemichordates
— |———>
1 Stylophorans
Trimery, axial complex, 2| |
dipleurula larva P r Solutes
Stereom 't Eocrinoids
A

- Edrioasteroids

Water-vascular

system, loss of gill slits Helicoplacoids

Echinoids

symmetry Ophiuroids
——» Asteroids
——» Crinoids

r.

600 500 400 300 200 100  Million years ago

Bottjer et al. (2005)

- Embryonic development of echinoid outgroups, e.q. asteroids,
ophiuroids, holothuroids, afford polarity of develoomental programs
and modes




A good fossil record is a developmental
evolutionary biologist’s best friend

| | Euechinoidea|

Accurate dating of — | Cdd
echinoderm fossils I ; j
combined with 4 1 §—
developmental 1 1
studies of modern

descendants reveals L - =

the tempo and mode
of developmental Pl 1YY= — — - i
evolution T S o

Wauchia-
pingian

Eotiaris guadalupensis n.sp.
Miocidaridae

Thompson et al. (2015) Sci. Rep.



Expression of mesoderm-specific requlatory gene
tbrain in echinoderms

. Holothuroids:

A tbrain B tbrain

Asteroids
Endomesoderm

36h
(Hinman and Davidson, 2007)

[ Endomesoderm . - " ‘.

A B C

(Maruyama, 2000)

Cidaroids:
Mesoderm

Euechinoids:
Skeletogenic
Mesoderm

(Wahl et al, 2009)



Dating deep-time developmental programs

Asteroids

Endomesoderm

Holothuroids:

Endomesoderm

Cidaroids:

Mesoderm

Euechinoids:

1: 2:
480 mya (Jell, 268.8 mya
2014) Tbrain is (Thompson et
deployed in al., 2015):
endomesoderm Tbrain is

of eleutherozoa deployed in
mesoderm of

echinoids

Skeletogenic
Mesoderm

—0—
1.

~250-170
mya: Tbrain is
deployed in
skeletogenic
mesoderm of
euechinoids

Divergence
estimates based
on fossil data allow
us to make
evolutionary
statements about
echinoderm
developmental
programs



A highly conserved mesodermal regulatory state
in echinoderms
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Reconstructing ancestral regulatory states in
echinoderms and dating their appearance

Table 4  Ancestral state reconstruction for embryos of ancestors of

extant echinoderm clades by comparative analysis of spatial gene
expression data from three or more taxa

At least 481 mya: in ancestral embryos prior to the asterozoan—

echinozoan divergence

1. erg was a mesodermal driver at blastula stage and gastrula stage

2. hex was a mesodermal driver at blastula stage

3. tgif was a mesodermal driver at blastula stage and gastrula stage

4. tgif was an endodermal driver at mid-gastrula

5. erg-hex—tgif kemel operated in mesoderm

6. Prediction: Aex is likely to be expressed in mesoderm of
holothurians, but endodermal expression after blastula stage is unclear

At least462 mya: in ancestral embryos prior to the holothuroid—echinoid

divergence

7. erg and tgif were initiated in the mesoderm and #gif came to be
expressed in the endoderm at a later time in development; whereas
erg remained restricted to the mesoderm throughout early embryonic
development to fulfill its ancestral function, 7gif was expressed first in
the mesodemm and then in the mesoderm and the endoderm

8. tgif mesoderm expression at mid-gastrula stage was either lost in

asteroids or gained in the lineage leading to the last common ancestor

of echinozoans

9. erg was expressed in the skeletogenic lineage at least as late in

development as mid-gastrula stage

10. hex endodermal expression is acquired early in asteroid

embryogenesis or lost in last common ancestor of extant echinozoans

At least 268 mya: in ancestral embryos at the cidaroid—euechinoid
divergence, e.g., in Archaeocidaris embryos

11. erg, hex, and tel were initiated in a few cells at the center of the
vegetal pole; later in the lineage leading to camaradont euechinoids
following the cidaroid-euechinoid divergence, these three genes are
restricted PMCs prior to PMC ingression

12. tgif remains expressed in mesodermal cells that ingressed into the

blastocoel (#gif is not expressed in mesodermal cells that have

ingressed in holothuroids)

Erkenbrack et al. (2016) Dev Gen Evo
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Going forward

Conceptual Toolkit
Integrating paleontological data and embryonic developmental data
informs assumptions regarding the genomic and morphological alterations
that must have occurred in lineages leading to modern taxa

Evolution of developmental programs
Interdisciplinary studies reveal the tempo and mode of evolution of
genomically encoded developmental programs

More taxa, fewer problems
Comparative analyses of embryonic development and omics data of
numerous taxa afford triangulation of evolutionary inferences and ancestral
state reconstruction
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WARNING
Interdisciplinary Advertisement

| encourage paleontologists in the audience to
reach out to developmental biologists!







Evolutionary inferences of the appearance of
GRN circuitry

Comparative analyses of gene expression and knowledge of the fossil
record revealed probability metrics for the appearance this

developmental program

Holothuroids, Asteroids, Ophiuroids
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