

Wood Jam Dynamics During Peak Flows From Conceptualization to Prediction

Dan Scott

Ellen Wohl

What have wood jams ever done for the river?

- Provide essential habitat
- Increase diversity and heterogeneity
- Regulate sediment dynamics
- Maintain healthy riparian zones
- Maintain ecological states
- Modulate connectivity

WOOD IS GOOD

Facilitate animal movement?

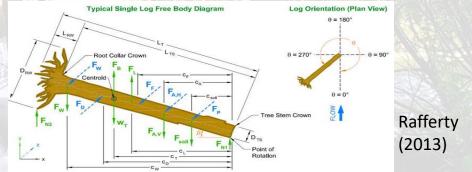
Wohl, E. (2013), Floodplains and wood, Earth-Science Rev., 123, 194–212, doi:10.1016/j.earscirev.2013.04.009.

Take Home

- Managers seek to understand when we can reintroduce or leave wood in rivers
- Wood jams are complex and will require extensive data to understand
- Our methodology involves integrating data from numerous investigators
- We will integrate these data into an evolving, context-aware, statistical model (decision tree classifier) to predict jam stability

Stability

- Jams shed and gain wood during peak flow
- Stability refers to the jam itself, not the wood within the jam


Objectives and Variability

South Fork Snoqualmie River, Central Cascades, WA

Last Bessemer Creek,

The Problem

 Wood jams can't be described by a simple force balance—too many interactions with other objects (banks, boulders, infrastructure)

 We lack a conceptual framework that can describe what happens to a jam during high flow based on low flow observations

Cache La Poudre Jam 1 at peak flow

CB

Bush

Exploring Wood Jam Dynamics During Peak Flows—Methods

MethodQuestion AnsweredMeasure jams before peak flowWhat does the jam look like at
low flow?Observe subset of jams with
timelapse photographyHow does jam respond to peak
flow?

Measure again after peak flow How did the jam change?

Measurements need to be reproducible
Data need to be shareable
Data need to be used effectively and in context

What factors influence jam stability?

Jam Stable—Why?

Nearly submerged

flow

- Diurnal "shaking" (dilation)
- Pinning boulder much taller than jam and peak

Jam Mobilized—Why?

- Submerged for multiple nights
- Diurnal "shaking" (dilation)
- Lots of racked material

Summary of Current Findings

- Diurnal stage fluctuations (result of diurnal snowmelt fluctuations) "shake" jams over weekly timescales
 - Does this phenomenon happen in non-snowmelt systems?
 - Are the effects of this phenomenon cumulative?
- A jam is more than the sum of all its wood

Future Directions

- Need for standardized jam measurements
 - Thresholds are easier to identify than dimensions
- How do we accommodate context (e.g., region, tree species, tree size)?
 - Seek more fundamental understanding
 - Adaptive model that recognizes its own limitations

Questions?

Funding provided by: Colorado Water Institute, USFS

New Wood Jam Piece Terminology Non-Structural Elements: objects that rest on other Structural Elements: objects that rest on o

matter, fine sediment Ismall w

Wood Jam Dynamics

Potential Explanatory Variables

- Jam dimensions relative to channel morphology
- Porosity, and the dominant flow path for water as it encounters the jam
- Interaction between the jam and the channel margins or large, relatively immobile objects in channel (bridge piers, large boulders, etc.)
- Presence of: rootwads, live wood, multi-trunk pieces, floodplain, transported pieces

Exploring Wood Jam Dynamics

Very Stable Jam—why?

- "Skewered" pieces
- Bouyancy is function of displaced volume, so log angle matters

