Characterizing interactions between earthquake rupture and fault zone structure

Yihe Huang (*University of Michigan Ann Arbor*) Jean-Paul Ampuero, Don V. Helmberger (*Caltech*)

> 2016 GSA meeting Sep 25, 2016

DFZs are detected by seismic waves

Table 1. Summary of Material Properties of Main Fault Zones			
Fault Zones	Width (m)	Velocity Reduction (%)	Qs
San Andreas	~ 150	30–40	10–40
	~ 200		
San Jacinto	125-180	35–45	20–40
	150-200	25-60	
Landers	270-360	35-60	
	150-200	30–40	20-30
Hector Mine	75-100	40-50	10–60
Calico	~ 1500	40-50	
	~ 1300	40-50	
Nojima	100-220		
Anatolian	~ 100	50	10–15

[Huang et al., 2014]

How can DFZs change earthquake rupture?

How can DFZs change earthquake rupture?

Rupture speed is how fast the rupture front propagates.

How can DFZs change earthquake rupture?

DFZs trap waves and induce fault stress changes

DFZs trap waves and induce fault stress changes

DFZs trap waves and induce fault stress changes

Slip rate functions are altered by DFZ reflections

[Huang and Ampuero, 2011; Huang et al., 2014]

Rupture velocity is accelerated by head waves

Rupture velocity is accelerated by head waves

[Huang et al., 2014, 2016]

Earthquakes cause DFZ damage on both compressional and extensional sides

DFZ damage preserves rupture pattern of previous earthquakes

Earthquake cycle models are needed to understand DFZ development

