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Slip partitioned systems can of wet kaolin produces long-lived as stress drops associated with fault Iif From r OViSi on
accommodate oblique convergence fault structures that easily reactivate. growth. Within the dry sand, an Dry Sand U P t 0 Stere

with different slip rake on two Scaled experiments using both dry  oblique-slip forethrust-backthrust ST — : A _ ,

or more faults and are well sand and wet kaolin with identical ~ pair forms first followed by a late 05° Convergence ANgle ‘upmme o’ Incremental shear strain {95¢ Convergence Angle o oiiten (24T oo 10° Clay Experiment P&l ngament
documented; however, the evolution boundary conditions provide stage through-going strike-slip maps overlaid by horizontal  Essssssssssssnassssscmnas:

of slip partitioned crustal systems insights on the role of material fault. In contrast, at shallow e - '_ '_ e S O displacements for experi- I SO S A S SIS S AN
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- . % ments in dry sand and wet

physical experiments in crustal We use motorized movement of the strike-slip fault forms first and , . kaolin. Shear strain is calcu-
analogs inform our understanding  rigid blocks overlaid by a layer a backthrust never develops. As lated using the curl of dis-
of fault evolution because we can of dry sand or wet kaolin clay to convergence accumulates in the | placement. A critical shear
control the loading and directly approximate crustal deformation clay, a forethrust forms dipping g T Thg e . value for faulting is deter-
observe the ensuing deformation. due to oblique subduction zone toward the underlying discontinuity. [eew T T NAmmaRas R - Emmee= " mined emperically and used
Using experiments in both dry sand convergence. Digital image The lack of cohesion in dry sand - :
and wet kaolin clay we explore correlation combined with may prevent the concentration of
how slip partitioning evolves under stereovision techniques provides mode III stresses that leads to the
different convergence angles. evolution of horizontal strain and early vertical strike-slip fault growth
Previous cohesionless dry sand uplift that constrain fault geometry  observed in the clay. The cohesion e
experiments documented that and slip vectors along the faults. of the clay, which is similar to style of faulting in the evolv- o St
convergence angle and fault strength Additionally, force gauges record ~ crustal rock strength, may facilitate 08° Convergence Angle o 2he > ed/min w01 ing slip partitioned system. 10° Convergence Angle s
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control slip partitioning. In contrast the evolution of fault-normal forces the maintenance of slip partitioned S
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to dry sand, the non-zero cohesion  throughout slip partitioning, such fault systems. e — S Note early slip partitioning
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; Stereovision records the 3D topography throughout the experiments providing the incremental uplift.
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across along subduction zones such N ; - : ' | | ‘ A Tekscan® FlexiForce A301 (0-1 Ib) force sensor and Tekscan® ELF
as the Great Sumatra Fault (right) " | | ity o Shear Strain (rad/min) . 1 Slip partitioning fails to 15° Convergence Angle uaear>tran 2d/min) 0.1 handle record pressure changes in the clay at 8 Hz. The force sensors
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Slip Partitioning in the Crust
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parallel faults with a characteristic ded history includine the devastatine Sumatra. And thauake of 2004 B e e RN oo ceaniieens | I11CNES Degin to develop ui- tbel° Omaflor; 0 he
recorded history including the devastating Sumatra-Andaman earthquake o g el stable slopes and landsliding oblique-slip fore-thrust

geometry: a dipping oblique slip fault d : : S . . |
. th t 2011 T h k Ok rth k J . S S LGS SR SRS I S E NSNS & SO N . R (44 _ 0 +
along the trench and a continental e e OTE TECEn OROKH LRI CATtiquaRe m Japan 3 S &Y -\\t\:\f\l\\l»\“”‘\\ttttttt SN  obscures detailed analysis Sugg@gtmg an “un- IRERE: ? + $t '
| | A |\ of fault activity (e.g. noisey clamping™ effect facili- o

Sihiielntdin” Nl

vertical strike-slip fault (Fitch, 1972). Ziat ~ s et .
Above, a three-dimensional schematic of the Sumatra subduction zone depicts the B , T2 et st . ooiors in the 15° sand fault- tates strike-slip faulting.
Due to their crustal scale, these faults oblique-thrust fault along the Sunda trench where the Australian and Indian plates ' ” .
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. . 1. Dry sand: an oblique-slip forethrust-backthrust 5. Pre-existing crustal weaknesses, such as from
EXPEI'I mental DESIgn pair forms first followed by a late stage through- back-arc volcanism along a subduction zone, play
going strike-slip fault an important role in the timing of slip partitioning.

Three plastic blocks with abutting 30° contacts drive a 2.5 cm overly- Surcier LENGTH SCALING3# Plate Displacement (mm) . Wet Kaolin clay: the strike-slip fault forms first . Due to the high obliquity of the tested
ing layer of dry sand (320 pm) or wet kaolin. The blocks are positioned muartgeerir asl Dry Sand: 1 cm = 5 km crust 60 120 and a backthrust never develops, a forethrust convergence angles, these experiments however,

on two plates: one fixed and the other moved along the x- and y-axis ; Wet Kaolin: 1 cm =0.75 - 1.4 km . /S0 SO RS i forms dipping toward the underlying discontinuity  likely more appropriately model smaller scale
Maxwell

by two stepper motors. | ‘ Sl Partining . The lack of cohesion in dry sand may prevent the  transpressional systems such as the West

A calibrated stereo camera system mounted above the model captures We measure the clay’s shear concentration of mode III stresses that leads to the  Spitsbergen fold-and-thrust belt or Transverse
high-resolution images of the region of interest (ROI). A force sensor = strength by fall cone method and ; early vertical strike-slip fault growth observed in Ranges of the San Andreas Fault system rather
embedded in the clay, or attached to the drive plate for sand models, adjust to 90-115 Pa by varying the . the clay. than larger scale subduction zones.

records the variations in fault normal stresses throughout the experi- % L, Kelvin water content (70% by weight).
ments.

. The cohesion of the clay, which 1s similar
i Wet Kaolin clay deforms as a - , R R = to crustal rock strength, may facilitate the
bi-viscous Burger’s material ex- . Sip Paritoning | _Landsiding maintenance of slip partitioned fault systems.

hibiting rate and state behvior at T A N ——
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