Subsurface Energy Application: Cross-Cutting Research Needs and the Role of Deep Geoscience Observatories

Jens Birkholzer Lawrence Berkeley National Laboratory

GSA 2016, Denver, Colorado

Subsurface Resources for a Safe and Efficient Energy Future

Geothermal Energy

Develop enhanced geothermal systems to tap into vast resource potential

Develop alternative solutions for geologic disposal of radioactive waste

Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 (March 2012), preliminary 2011

THE SUBSURFACE:

- Supplies/enables >80% of the energy consumed in the U.S.
- Serves as a vast reservoir for storage of CO₂, nuclear and other energy waste streams

Geological Carbon Sequestration 🧜

Reduce risk and cost of GCS to remove barriers for full-scale deployment

Common Subsurfaces Challenges

Discovering, Characterizing, and Predicting

Efficiently and accurately locate targets and predicting their response to engineered perturbations

Accessing

Safe and cost-effective drilling, while assuring reservoir integrity

Manipulating

Create/construct desired subsurface conditions in challenging high-pressure/hightemperature environments

Sustaining

Maintain optimal subsurface conditions over multi-decadal or longer time frames through complex system evolution

Monitoring

Improve observational methods and advance understanding of multi-scale complexities through system lifetimes

Big Idea: Adaptive Control of the Subsurface for a Safe and Effective Energy Future

10-Year Vision:

- Enable large-scale safe CO₂ sequestration
- More than double U. S. electricity production from geothermal reservoirs
- Double reservoir effectiveness (recovery factor, EOR efficacy, CO₂ sequestration capacity) with reduced footprint
- Establish practical feasibility of deep borehole disposal of nuclear waste
- Concurrently protect the environment (GHG reductions, water and air resources, induced seismicity)

Visit GSA Exhibitor Booth #306 to learn more about SubTER

SubTER Technical Framework

Wellbore Integrity and Drilling Technologies Subsurface Stress & Induced Seismicity Permeability Manipulation & Fluid Control

New Subsurface Signals

Materials and technologies to ensure wellbore integrity over decadal timeframes

Characterization and control of subsurface stress and induced seismicity

Approaches to manipulate subsurface fractures, reactions and flow

Sensors and algorithms to monitor subsurface dynamics and facilitate adaptive control

Geoscience Field Observatories

Advanced Simulation Capabilities

Coordinated Breakthrough on Many Fronts: Example Goals

Demonstrate next generation wellbore integrity approaches in the field: on path to significantly reducing well failures in 10 years

- New materials that provide significant increase in bond strength and pressure integrity
- Autonomous sensing systems for lifetime State of Health information
- New high temperature and high pressure drilling and completion technologies: 300° C and 2500 bar

Demonstrate measurement, characterization, and manipulation of in-situ subsurface stress in the field: on path to drastic reduction of damaging induced seismicity in 10 years

- Dramatic improvement of stress estimates away from the borehole and locations of critically stressed faults and associated microseismicity
- Control and characterize flow along activated fractures and faults
- Develop risk-driven approaches to manage induced seismicity

Demonstrate adaptive control of permeability in the field: on path to predictable fractures in 10 years, leading to doubling of energy extraction efficiency for EGS and fossil fuels

- New capabilities to accurately simulate fracture initiation and growth in heterogeneous materials
- New chemical and hydrodynamic strategies to manipulate subsurface permeability

Transform monitoring of subsurface system behavior on path to assured subsurface storage in 10 years

- Critical system threshold identification with fiber-based technologies
- Large sensor array and rapid processing techniques to inform adaptive control strategies
- Big/heterogeneous multi-sensor data integration, joint inversion and analytics

Geoscience Field Observatories: Nuclear Waste

Stripa Mine

Project	Where	←1960		←1970	←1980	←1990	←2000	←2010	
Lvons Mine (Project Salt Vault)	USA								URL and SNF demo
Asse Mine	Germany								LLW/ILW currently in remediation
Stripa Mine	Sweden								
Climax Mine	USA								Former nuclear testing; SNF demo
G-Tunnel	USA								Former nuclear testing
Fanay-Augeres	France								Former uranium mine
HADES-URF*	Belgium								
Konrad**	Germany								Being developed as a repository
Grimsel Test Site	Switzerland								
AECL URL (Lac du Bonnet)*	Canada								
Gorleben**	Germany		NOTE: T	imelines					Operations curtailed 2012
WIPP**	USA		accurate	e to					URL testing for heat-generating waste
Amelie	France		approx.	±3 years.					Former potash mine
Tono Mine	Japan								
Kamaishi Mine	Japan								
Tournemire Tunnel	France		Salt	1					Former rail tunnel
Aspo HRL*	Sweden		Cry	stalline					
Olkiluoto Research Tunnel	Finland		Tuf	f					Developed for LLW/ILW investigations
Mont Terri	Switzerland		Pla	stic clay					Former highway tunnel
Pecs**	Hungary		Arg	illaceous					Former uranium mine
ESF (Yucca Mountain)**	USA		Oth	er sedimenta	N				
Busted Butte*	USA				-				
Bure URL (Meuse/Haute Marne)**	France								
Morsleben**	Germany		* Pur	pose-built, ge	neric				LLW/ILW repository 1981-1998
Mizunami URL*	Japan		** Pur	pose-built, sit	e-specific				
ONKALO**	Finland		(Ge	neric pre-exis	ting URLs have no r	narks)			
Horonobe URL*	Japan								
Korea UG Research Tunnel*	Rep. of Korea								
NOT SHOWN- Early U.S. URLS (Aven	Island CSMM	ino otc) and mor	e recent II/G	pyectigations in the	Crech Republic	Canada, and alco	where	

Long History of Underground Observatories for Nuclear Waste Disposal R&D

Geoscience Field Observatories: Geothermal

FORGE – Frontier Observatory for Research in Geothermal Energy

Characteristics:

Dedicated facilities for observation and controlled experiments, located in representative lithologies Ability to manipulate the subsurface & perform destructive testing Comprehensive characterization and monitoring Testing at scale, under in situ conditions, in complex and heterogeneous subsurface systems Community facilities with partnership between science, industry, and other stakeholders; open access to data

Objectives:

Improve process understanding Test simulation capabilities Apply new manipulation technologies Prototype advanced imaging/monitoring methods Advance new approaches through testing and demonstration to adoption

Potential FORGE Sites: Phase II Projects

Potential FORGE Focus Areas

Zonal Isolation

New Stimulation Technologies

Wellbore Leakage & Sealing Experiment (Mont Terri)

A Controlled Fault Slip Experiment in a Shale Layer

0.5m

Geosciences

ARTH & ENVIRONMENTAL SCIENCES AREA

Marcellus Shale Laboratory (MSEEL)

Monitor hydraulic fracturing characteristics and evaluate potential environmental issues

Advanced Monitoring in CO₂ Demonstration Projects

Distributed acoustic sensing for high spatial and temporal resolution, with permanent excitation through permanent fixed rotary sources

Other Subsurface Energy Geoscience Observatories

Pressure Management and Desalination Pilot Test for CO₂ Sequestration

Geoscience Observatories.... Build Communities

SubTER Planning Meeting

Backup

HG-A Experiment – Damage Zone Assessment

Measurements and predictions of fluid / gas flow in the tunnel nearfield after backfilling to understand damage zone sealing and healing

