1. Introduction
Amphiboles are a ubiquitous occurrence in many igneous and metamorphic rocks. They form during various geologic processes such as magmatic crystallization, hydrothermal alteration, and metasomatism. Amphiboles are typically classified into four groups: (1) amphiboles with a high calcium content, (2) amphiboles with a high magnesium content, (3) amphiboles with a high iron content, and (4) amphiboles with a combination of these elements.

2. Previous Work
Fibrous amphiboles have been found in various geological settings, including magmatic, metamorphic, and hydrothermal environments. In magmatic settings, fibrous amphiboles can form from the crystallization of magma. In metamorphic settings, fibrous amphiboles can form from the recrystallization of pre-existing minerals. In hydrothermal settings, fibrous amphiboles can form from the precipitation of minerals from aqueous solutions.

3. Result
Boulder City Pluton (NV)
Wilson Ridge Pluton (AZ)

4. Discussion
The results indicate that fibrous amphiboles can form from a variety of geologic processes. The crystallographic parameters of the fibrous amphiboles are consistent with the synthetic models of fibrous amphibole formation. The results also suggest that fibrous amphiboles are a potential source of asbestos.

5. Conclusion
The results of this study provide new insights into the formation of fibrous amphiboles and their potential as a source of asbestos. These findings have implications for the geological and environmental sciences.

6. References

METAMORPHIC MICROTEXTURES AND THE PETROGENESIS OF AMPHIBOLE ASBESTOS
AUSTIN, Tomoyo; METCALF, Rodney V.; BUCK, Brenda J.; (1) Department of Geoscience, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4010, austint@unlv.nevada.edu