Quantifying the Effects of Spatial Uncertainty in Fracture Permeability on CO$_2$ Leakage through Columbia River Basalt Flow Interiors

Alec Gierzynski
Virginia Tech Department of Geosciences
25 September 2016
The Columbia River Basalt Group

After Reidel et al (2013)

After Long (1986)
Research Question

How does uncertainty in fracture permeability affect CO$_2$ leakage in a basalt fracture network?

- Spatially?
- Temporally?
- Near the critical point of CO$_2$?
Approach

I. LiDAR scanning to make fracture maps
II. Model of fracture permeability applied to a fracture map
III. Monte Carlo simulation of $N=50$ iterations with spatially random permeability

After Long (1986)
Field Work

- Field work: acquire terrestrial LiDAR scans of outcrop fracture networks to image fracture networks.
- Data processing: use surface roughness algorithm developed by Pollyea and Fairley (2011) to produce fracture maps.
Fracture mapping

- Discretization of roughness boxes was 2.5 cm
- Binary transform of roughness values based on histogram produces a grid where each cell is considered either fractured or not
Permeability model

Lindberg et al 1989

- Statistical analysis of CRB flow interior cooling joints
- Lognormal distribution
- Mean of 0.226 mm
- Standard deviation of 0.489 mm
- No spatial correlation

Permeability model continued

- Use random number generator to produce a lognormal set of apertures
- Convert to permeability using cubic law
- Hydraulic tests suggest that in situ fracture permeability is much lower
- Estimated new mean k_f based on weighted geomean

\[k_{eff} = \exp\left(\frac{\sum_{i=1}^{n} w_i \ln k_i}{\sum_{i=1}^{n} w_i} \right) \]

\[k_f = \exp\left(\frac{\ln k_{eff} - w_m \ln k_m}{w_f} \right) \]
Model built using TOUGH3 (Jung et al, in press)
ECO2M equation of state (Pruess 2011)
This model does not account for chemistry due to short time-scales
Example results from Monte Carlo simulations

- Phase transition occurs at different depths (approximately 1 meter difference)
- Corresponding pressure profiles suggest this is caused by pressure
- Spatial permeability differences affect fluid pressure
Results

- E-type analysis
- Standard deviation of free-phase CO$_2$ saturation (left) and fluid pressure (right) across N=36 simulations
Conclusions

• Spatial uncertainty in fracture permeability has little effect on free-phase CO$_2$ saturation

• Distribution of fluid pressure, and thus the location of the critical point, is affected by the spatial distribution of fracture permeability