Quantifying the Effects of Spatial Uncertainty in Fracture Permeability on CO₂ Leakage through Columbia River Basalt Flow Interiors

Alec Gierzynski Virginia Tech Department of Geosciences

25 September 2016

The Columbia River Basalt Group

After Reidel et al (2013)

After Long (1986)

Research Question

How does uncertainty in fracture permeability affect CO₂ leakage in a basalt fracture network?

- Spatially?
- Temporally?
- Near the critical point of CO₂?

Approach

- I. LiDAR scanning to make fracture maps
- II. Model of fracture permeability applied to a fracture map
- III. Monte Carlo simulation of N=50 iterations with spatially random permeability

After Long (1986)

Field Work

- Field work: acquire terrestrial LiDAR scans of outcrop fracture networks to image fracture networks.
- Data processing: use surface roughness algorithm developed by Pollyea and Fairley (2011) to produce fracture maps

Fracture mapping

 Discretization of roughness boxes was 2.5 cm

•

Binary transform
of roughness
values based on
histogram
produces a grid
where each cell is
considered either
fractured or not

Permeability model

Lindberg et al 1989

- Statistical analysis of CRB flow interior cooling joints
- Lognormal distribution
- Mean of 0.226 mm
- Standard deviation of 0.489
 mm
- No spatial correlation

From Lindberg et al (1989)

Permeability model continued

- Use random number generator to produce a lognormal set of apertures
- Convert to permeability using cubic law
- Hydraulic tests suggest that *in situ* fracture permeability is much lower
- Estimated new mean k_f based on weighted geomean

$$k_{eff} = \exp(\frac{\sum_{i=1}^{n} w_i lnk_i}{\sum_{i=1}^{n} w_i})$$

$$k_f = \exp\left(\frac{lnk_{eff} - w_m lnk_m}{w_f}\right)$$

Model

- Model built using TOUGH3 (Jung et al, in press)
- ECO2M equation of state (Pruess 2011)
- This model does not account for chemistry due to short timescales

Example results from Monte Carlo simulations

- Phase transition occurs at different depths (approximately 1 meter difference)
- Corresponding pressure profiles suggest this is caused by pressure
- Spatial permeability differences affect fluid pressure

Results

0.0E+00

- E-type analysis
- Standard deviation of free-phase CO₂ saturation (left) and fluid pressure (right) across N=36 simulations

Conclusions

- Spatial uncertainty in fracture permeability has little effect on free-phase CO₂ saturation
- Distribution of fluid pressure, and thus the location of the critical point, is affected by the spatial distribution of fracture permeability