

The Impact of Cenozoic Cooling on the Diversity of Planktonic Foraminifera

Isabel S. Fenton,

P. N. Pearson, T. Dunkley Jones, A. Purvis, A. Farnsworth, D. J. Lunt, P. Markwick, and the Descent into the Icehouse Team

Studying Diversity in Space and Time

What is the Latitudinal Diversity Gradient?

- The LDG is found in many taxa, both marine and terrestrial
- Species richness is higher near the equator
- Many explanations, no clear consensus as to the cause

Aims

1. What drives the species richness of ocean plankton today?

2. Have those drivers remained constant through time?

Observed Recent Richness

Predicted Recent Richness

(Spatial autoregressive models; SST a third-order polynomial; first order interactions)

Environment

Aims

- 1. What drives the species richness of ocean plankton today?
- 2. Have those drivers remained constant through time?

Eocene Environment

Eocene Sites

Observed Eocene Richness

Comparison of Predicted and Observed Diversity

Predicted data
Tectonics GCM
CO₂ GCM
Northern hemisphere
Southern hemisphere

Discrepancies

Possible explanations:

- Model missing a relevant variable
- The relationship between diversity and environment has changed
- GCM early Eocene temperature estimates are inaccurate

Inglis et al (2015) *Paleoceanography* Lunt et al (2010) *Geology*

Conclusions

- Present day diversity of PFs is mainly driven by temperature, although other variables also contribute
- By the end of the Eocene, a latitudinal diversity gradient had developed
- Mismatch between predicted and observed diversity in early Eocene
 - Proxy records suggest these GCMs produce poor environment estimates

Modelling

- Using Spatial Autoregressive Models to account for spatial autocorrelation
- SST modelled as a third order polynomial (complexity level suggested by GAMs)
- First order interactions between all variables
- Exclude points with delta carbonate ion
 <-10.9 to reduce effect of dissolution