The Future of Spectroscopy

M. Darby Dyar Dept. of Astronomy Mount Holyoke College Senior Scientist Planetary Science Institute

The Holy Grail: Accurate Mineralogy Derived from Spectroscopy

http://www.movie-roulette.com/photos_big/monty-python-and-the-holy-grail-4-1.jpeg

McCanta et al. (2016) Icarus, submitted

E08S14

PELKEY ET AL.: CRISM MULTISPECTRAL SUMMARY PRODUCTS

E08S14

Table 1. CRISM Spectral Parameter Summary Products^a

Name	Parameter	Formulation ^b	Rationale						
Surface Parameters °									
R770	0.77 μ m reflectance	R770	rock/dust						
RBR	red/blue ratio	R770/R440	rock/dust						
BD530	0.53 μm band depth	1 - (R530/(a*R648 + b*R440))	crystalline ferric minerals						
SH600	0.60 μm shoulder height	R600/(a*R530 + b*R680)	select ferric minerals						
BD640	0.64 μ m band depth	1 - (R648/(a*R600 + b*R680))	select ferric minerals						
BD860	0.86 μm band depth	1 - (R860/(a*R800 + b*R920))	select ferric minerals						
RPEAK1	reflectance peak 1	wavelength where 1st derivative $= 0$	Fe mineralogy						
		of 5th order polynomial fit to R600,							
		R648, R680, R710, R740, R770, R800, R830							
BDI1000VIS	1 μ m integrated band depth;	divide R830, R860, R890, R920	Fe mineralogy						
	VIS wavelengths	by RPEAK1 then integrate over							
		(1 - normalized reflectances)							
BDI1000IR	1 μ m integrated band depth;	divide R950, R980, R1020, R1050, R1080, R1150	Fe mineralogy						
	IR wavelengths	by linear fit from peak R between 1.3–1.87 μ m							
		to R2530 extrapolated backward to remove							
		continuum, then integrate over							
59-90-8 - 10		(1 - continuum-corrected reflectances)							
IRA	1.3 μ m reflectance	R1330	IR albedo						
OLINDEX	Olivine index	(R1695/(0.1*R1050 + 0.1*R1210))	olivine will be strongly positive;						
		+ 0.4 R1330 + 0.4 R1470)) - 1	based on fayalite						
LCPINDEX	pyroxene index	((R1330-R1050)/(R1330 + R1050))	pyroxene will be strongly positive;						
		* ((R1330-R1815)/(R1330 + R1815)	favors LCP						
HCPXINDEX	pyroxene index	((R1470-R1050)/(R1470 + R1050))	pyroxene will be strongly positive;						
		* ((R1470-R2067)/(R1470 + R2067)	favors HCP						
VAR	spectral variance	variance of observed data from a line fit from 1.0–2.3 μm	olivine and pyroxene will have high values						
ISLOPE1	-1 * spectral slope1	(R1815-R2530)/(2530-1815)	ferric coating on dark rock						
BD1435	1.435 μ m band depth	1 - (R1430/(a*R1370 + b*R1470))	CO ₂ ice						

Pelkey, S. M., et al. (2007), CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance, J. Geophys. Res., 112, E08S14, doi:10.1029/2006JE002831.

Tanabe-Sugano diagram for pyroxene

Klima et al. (2007) MAPS, 42, 235-253 Spectroscopy + Machine Learning **Better** Spectroscopy

Chemometrics is an

interdisciplinary field combining experimental design, physical-chemical measurements, multivariate statistical analysis, mathematical modeling, and information technology for extracting useful information from data.

...Journal of Chemometrics

Chemometric Approaches to:

- A. Multivariate analysis
- B. X-ray absorption spectroscopy
- C. Laser-induced breakdown spectroscopy
- D. Baseline removal
- E. Calibration transfer
- F. Data preprocessing

Most Basic Technique for Multivariate Analysis Partial Least Squares (PLS)

- Shrink regression equation by creating hybrid channels that are linear combinations of all previous channels.
- Correlate two matrices described by Y = X b :
 - Spectra (X) (*p* samples × *N* channels)
 - Variable(s) of interest (Y)
- This removes co-linearity because directions in that new vector space are ortho-normal, avoiding the problem that inhibits ordinary least-squares regression.
- PLS analysis thus produces *b*-coefficients for each channel that represent the correlation implicit in **b**.

Most Basic Technique for Multivariate Analysis Partial Least Squares (PLS)

Each Spectral Channel is an Independent Variable Prediction Quantities (elements, mineralogy, %Fe³⁺⁾ are the Dependent Variable(s)

		λ1	λ2	λ3	λ4	λ5	λ6	λ7	λ8	λ9	λ10	λn
	Fe ³⁺	(keV)	 (keV)									
Sample 1												
Sample 2												
Sample 3												
Sample 4												
Sample 5												
Sample n												

A. Multivariate Analysis

Example #1: X-ray Absorption Spectroscopy

Fe XANES Data used to Predict %Fe³⁺ in Powders using XANES Pre-Edge

Wilke et al. (2001) Am. Min. 86, 714-730, calibration for powders

B. XAS Example

40 30

Normalized o

Si(111)

7117

Pre-edge energy (eV)

7120

Multivariate Predictions of Fe³⁺ in Silicate Glass and Garnet

Garnet XAS Data

Identification of Key Predictive Channels

Amphibole XAS Data

Laser-Induced Breakdown Spectroscopy: LIBS

Calibration curve and the best-fit line

LIBS Challenge for Geological Samples: Matrix Effects!

C. LIBS Example

Prediction of SiO₂ contents of LIBS standards (1354 samples, 3 plasma temperatures, Mars conditions) using this single Si I emission line is:

±13.76 wt.% SiO₂

C. LIBS Example

Prediction of SiO₂ using all channels of this spectrum is: ± 4.69 Wt.% SiO₂ C. LIBS Example

C. LIBS Example

Chemometrics (Machine Learning) gives us answers to vexing problems...

The baseline removal conundrum

D. Baseline Removal

Species matching success for Raman spectroscopy comparing optimized baseline removal methods to no baseline removal (far left) and Custom BLR (far right) by taxonomic rank (Dana classification number).

D. Baseline Removal

E. Cal Trans

E. Cal Trans

Visualization of Spectral Preprocessing Steps

Raman Data

F. Spectral Pre-Processing

Protocols Based on Individual Peaks and Underlying Physical Principles

Insights from Machine Learning

Machine Learning can enable fundamental Insights into spectra

Barriers to Using Machine Learning

- 1. Too little overlap between planetary and computer science communities
- 2. Steep learning curve to understand new methods
- 3. Reluctance to move on from fundamentals-based approaches
- 4. Inadequate and silo-ed spectral databases
- 5. Ignorance of instrumental differences

Benefits of Using Machine Learning

- 1. Utilize & evaluate all channels of spectral data using automated (objective) feature selection
- 2. Quantifiable error bars for conclusions based on spectral data
- 3. Improved instrument design for planetary exploration
- 4. Calibration transfer between data sets
- 5. Ability to integrate data from multiple types of spectroscopy in a single model
- Gain new insights into fundamental physical processes

