Economic Feasibility of Rare Earth Element Extraction from Wyoming Coal Ash/Char

A. J. Enriquez1, D. C. Finnoff1,
J. F. McLaughlin2, D. A. Bagdonas2

Department of Economics and Finance, University of Wyoming1

Carbon Management Institute, Energy Innovation Center, Dept. 4902, University of Wyoming2

September 27, 2016
Background

- Wyoming: largest producer of coal in U.S.\(^1\)
- Coal on the decline
 - Market effects
 - Regulatory changes \(^2\)
- Diversification \Rightarrow REE extraction from coal ash?
 - Increased global demand
 - China dominates market

\(^1\)(EIA, 2016)
\(^2\)(Godby et al., 2015)
REE Extraction Potential

- Taggart et al. (2016) sampled 3 ash sources:
 - Appalachian
 - Illinois
 - Powder River Basin (PRB)

- Results:
 - PRB: lowest average total REE content
 - PRB: highest extractable REE content
Objective

Analyze economic feasibility of RE extraction from coal ash through two economic models:

- Open-pit RE mine
- Coal stations
Open-Pit Mine Overview

- Small-tonnage RE mine built from scratch
- Significant start-up costs
 - Capital cost of mining
 - Capital cost of refining
- Estimates from the literature:
 - Camm, 1991
 - MIT, “Opening new mines” study
 - MIT, “Green refinement” study
- SRK Consulting’s Mountain Pass Report
 - Mine-to-oxide operating cost:
 1.17 US$ per lb TREO
Open-Pit Mine Results

Initial Mining Capital Cost \approx 127 million
Initial Refining Capital Cost \approx 100 million

Annual Mining Operating Cost \approx 5.5 million
Annual Refining Operating Cost \approx 387 million

Annual Revenue \approx 265 million

\Rightarrow Large, negative net present value (NPV)
\approx -1.9 billion
Coal Stations Overview

- Powder River Basin (PRB)
 - Laramie River
 - Dave Johnston
 - WyoDak
 - Dry Fork
- Green River Basin (GRB)
 - Jim Bridger
 - Naughton
- Data on RE concentrations in coal ash (in ppm) 3
 - FA, BA, and FA+BA (LA)

3Estimates provided by J.F. McLaughlin and D.A. Bagdonas
Model Setup: Revenue

- Ash sources:
 - Ash generated daily (rate)
 - Existing landfill (stock)

- Rate Ash Calculations
 - ppm ⇒ % concentration ⇒ multiplied by ash production rate
 ⇒ converted to oxide volume

- Stock Ash Calculations
 - Landfill ash completely refined by last year of operation
 - Same conversion to oxide form

Volume per year = rate per year + fraction of stock refined per year
TREO Volumes

<table>
<thead>
<tr>
<th>Stations</th>
<th>Low Ash Estimate</th>
<th></th>
<th>High Ash Estimate</th>
<th></th>
<th>Average Ash Estimate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TREO (lbs/year)</td>
<td>TREO (lbs/year)</td>
<td>TREO (lbs/year)</td>
<td>TREO (lbs/year)</td>
<td>TREO (tons/year)</td>
<td>TREO (lbs/year)</td>
</tr>
<tr>
<td></td>
<td>70% yield</td>
<td>100% yield</td>
<td>70% yield</td>
<td>100% yield</td>
<td>70% yield</td>
<td>100% yield</td>
</tr>
<tr>
<td>Powder River Basin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laramie River</td>
<td>26225</td>
<td>37464</td>
<td>62940</td>
<td>89914</td>
<td>44582</td>
<td>63689</td>
</tr>
<tr>
<td>Dave Johnston</td>
<td>278504</td>
<td>397863</td>
<td>278504</td>
<td>397863</td>
<td>278504</td>
<td>397863</td>
</tr>
<tr>
<td>WyoDak</td>
<td>80476</td>
<td>114965</td>
<td>109277</td>
<td>156110</td>
<td>94876</td>
<td>135538</td>
</tr>
<tr>
<td>Dry Fork</td>
<td>108360</td>
<td>154800</td>
<td>151408</td>
<td>216297</td>
<td>129884</td>
<td>185548</td>
</tr>
<tr>
<td>Green River Basin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jim Bridger*</td>
<td>108685</td>
<td>155264</td>
<td>260844</td>
<td>372634</td>
<td>184764</td>
<td>263949</td>
</tr>
<tr>
<td>Naughton*</td>
<td>26176</td>
<td>37394</td>
<td>26176</td>
<td>37394</td>
<td>26176</td>
<td>37394</td>
</tr>
</tbody>
</table>

Table 1: Yearly TREO Volumes
Model Setup: Revenue

- Obtained average prices of REs using:
 - Argus Media Service \textit{MetalPrices.com}
 - USGS Rare Earths Minerals Yearbook
- Multiplied volume per year by average price
- Summed revenue of all REs
 - OMITTED EXCESSIVE REs
- Used 70% recovery rate \(^4\)
 - Heated nitric acid digestion
- Assuming 95% of product is sold

\(^4\)as found by Taggart et al. when testing PRB ash
Coal Station Revenues

Table 2: Yearly Revenue by Station

<table>
<thead>
<tr>
<th>Stations</th>
<th>Low Ash Estimate</th>
<th></th>
<th>High Ash Estimate</th>
<th></th>
<th>Average Ash Estimate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Annual Revenue</td>
<td>Annual Revenue</td>
<td>Annual Revenue</td>
<td>Annual Revenue</td>
<td>Annual Revenue</td>
<td>Annual Revenue</td>
</tr>
<tr>
<td></td>
<td>($/year) 70% Yield</td>
<td>Critical REE Only</td>
<td>($/year) 70% Yield</td>
<td>Critical REE Only</td>
<td>($/year) 70% Yield</td>
<td>Critical REE Only</td>
</tr>
<tr>
<td>Powder River Basin</td>
<td>$889,710</td>
<td>$651,846</td>
<td>$2,135,303</td>
<td>$1,564,431</td>
<td>$1,512,506</td>
<td>$1,108,139</td>
</tr>
<tr>
<td>Laramie River*</td>
<td>$2,475,429</td>
<td>$1,808,298</td>
<td>$2,475,429</td>
<td>$1,808,298</td>
<td>$2,475,429</td>
<td>$1,808,298</td>
</tr>
<tr>
<td>Dave Johnston</td>
<td>$1,296,431</td>
<td>$955,055</td>
<td>$2,273,576</td>
<td>$1,677,264</td>
<td>$1,785,004</td>
<td>$1,316,159</td>
</tr>
<tr>
<td>WyoDak</td>
<td>$1,123,246</td>
<td>$828,597</td>
<td>$2,520,777</td>
<td>$1,933,426</td>
<td>$1,872,011</td>
<td>$1,381,012</td>
</tr>
<tr>
<td>Dry Fork</td>
<td>$3,444,956</td>
<td>$2,445,598</td>
<td>$8,267,894</td>
<td>$5,869,434</td>
<td>$5,856,425</td>
<td>$4,157,516</td>
</tr>
<tr>
<td>Green River Basin</td>
<td>$772,678</td>
<td>$562,380</td>
<td>$772,678</td>
<td>$562,380</td>
<td>$772,678</td>
<td>$562,380</td>
</tr>
<tr>
<td>Jim Bridger*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naughton*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Projected values
Model Setup: Costs

- Cost of RE extraction from coal ash
 ⇒ largely undocumented
- Initial investment: lower
- Breakeven ash-to-oxide unit operating costs
 ⇒ using NPV equation

$\text{\$\$\$}$
$NPV_i = \left[\frac{1 - \rho^{n+1}}{1 - \rho} \right] \pi_{it} - FC_i$
Model Setup: NPV

\[NPV_i = \left[\frac{1 - \rho^{n+1}}{1 - \rho} \right] \pi_{it} - FC_i \]

\(i = \text{station} \)
Model Setup: NPV

\[NPV_i = \left[\frac{1 - \rho^{n+1}}{1 - \rho} \right] \pi_{it} - FC_i \]

i = station

\[t = year \]
Model Setup: NPV

$$NPV_i = \left[\frac{1 - \rho^{n+1}}{1 - \rho} \right] \pi_{it} - FC_i$$

i = station

t = year

$$\rho = \text{discount factor} = \frac{1}{1+r}$$
Model Setup: NPV

\[NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho} \right] \pi_{it} - FC_i \]

\(i = \text{station} \)

\(t = \text{year} \)

\(\rho = \text{discount factor} = \frac{1}{1+r} \)

\(r = \text{interest rate} \)
Model Setup: NPV

\[NPV_i = \left[\frac{1 - \rho^{n+1}}{1 - \rho} \right] \pi_{it} - FC_i \]

\(i = \text{station} \)
\(t = \text{year} \)
\(\rho = \text{discount factor} = \frac{1}{1+r} \)
\(r = \text{interest rate} \)
\(\pi_{it} = \text{profit} = R_{it} - C_{it} \)
Model Setup: NPV

\[NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho} \right] \pi_{it} - FC_i \]

i = station

t = year

\(\rho \) = discount factor = \(\frac{1}{1+r} \)

r = interest rate

\(\pi_{it} \) = profit = \(R_{it} - C_{it} \)

\(R_{it} \) = annual revenue
Model Setup: NPV

\[NPV_i = \left[\frac{1 - \rho^{n+1}}{1 - \rho} \right] \pi_{it} - FC_i \]

i = station

t = year

\(\rho = \text{discount factor} = \frac{1}{1+r} \)

r = interest rate

\(\pi_{it} = \text{profit} = R_{it} - C_{it} \)

\(R_{it} = \text{annual revenue} \)

\(C_{it} = \text{annual cost} = w^k Q^k_{it} \)
Model Setup: NPV

\[NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho} \right] \pi_{it} - FC_i \]

i = station

t = year

\(\rho = \) discount factor \(= \frac{1}{1+r} \)

r = interest rate

\(\pi_{it} = \) profit \(= R_{it} - C_{it} \)

\(R_{it} = \) annual revenue

\(C_{it} = \) annual cost \(= w^k Q^k_{it} \)

\(w^k = \) breakeven unit cost parameter
Model Setup: NPV

\[NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho} \right] \pi_{it} - FC_i \]

i = station

t = year

\[\rho = \text{discount factor} = \frac{1}{1+r} \]

r = interest rate

\[\pi_{it} = \text{profit} = R_{it} - C_{it} \]

\[R_{it} = \text{annual revenue} \]

\[C_{it} = \text{annual cost} = w^k Q_{it}^k \]

\[w^k = \text{breakeven unit cost parameter} \]

\[Q_{it}^k = \text{volume of ash refined} \]
Model Setup: NPV

\[NPV_i = \left[\frac{1 - \rho^{n+1}}{1 - \rho} \right] \pi_{it} - FC_i \]

\(i = \text{station} \)

\(t = \text{year} \)

\(\rho = \text{discount factor} = \frac{1}{1+r} \)

\(r = \text{interest rate} \)

\(\pi_{it} = \text{profit} = R_{it} - C_{it} \)

\(R_{it} = \text{annual revenue} \)

\(C_{it} = \text{annual cost} = w^k Q_{it}^k \)

\(w^k = \text{breakeven unit cost parameter} \)

\(Q_{it}^k = \text{volume of ash refined} \)

\(FC_i = \text{initial investment costs} \)
Maximum Initial Investment

Assuming absence of operating costs:

\[FC_{i}^{\text{max}} = \left[\frac{1 - \rho^{n+1}}{1 - \rho} \right] R_{it}. \]

- Choose level of investment below maximum
 \[\Rightarrow \text{allows for operating costs} \]
- Value set at $15 million\(^5\)

\(^5\)for all stations besides Naughton
Maximum Initial Investment

<table>
<thead>
<tr>
<th>Comparison of Coal Stations</th>
<th>Max Initial Capital Cost ($)</th>
<th>Max Initial Capital Cost ($)</th>
<th>Max Initial Capital Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Ash Estimate</td>
<td>High Ash Estimate</td>
<td>Average Ash Estimate</td>
</tr>
<tr>
<td>Powder River Basin</td>
<td>$11,773,959</td>
<td>$28,257,501</td>
<td>$20,015,730</td>
</tr>
<tr>
<td>Laramie River*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dave Johnston</td>
<td>$32,758,555</td>
<td>$32,758,555</td>
<td>$32,758,555</td>
</tr>
<tr>
<td>WyoDak</td>
<td>$17,156,304</td>
<td>$30,087,332</td>
<td>$23,621,818</td>
</tr>
<tr>
<td>Dry Fork</td>
<td>$14,864,453</td>
<td>$34,682,013</td>
<td>$24,773,233</td>
</tr>
<tr>
<td>Green River Basin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jim Bridger*</td>
<td>$45,588,769</td>
<td>$109,413,046</td>
<td>$77,500,907</td>
</tr>
<tr>
<td>Naughton*</td>
<td>$10,225,222</td>
<td>$10,225,222</td>
<td>$10,225,222</td>
</tr>
</tbody>
</table>

Table 3: Maximum Initial Investment by Station
Zooming in on the Unit Cost Parameter

Recall:

\[C_{it} = \text{annual costs} = w^k Q^k_{it} \]

\[w^k = \text{breakeven unit cost parameter} \]

\[Q_{it} = \text{volume of ash refined} \]

To calculate the breakeven unit cost:

\[w^k = \frac{R_{it} - \frac{FC_i}{1 - \rho^n + 1}}{Q^k_{it}}. \]

2 variants:

1. Input alternative \((k = \text{ash})\)
2. Output alternative \((k = \text{TREO})\)
Zooming in on the Unit Cost Parameter

- Recall, from SRK Mountain Pass Report:
 mine-to-oxide operating cost = $1.17 per pound TREO

- Ash-to-oxide operating cost:
 ash already partly refined

⇒ ash-to-oxide operating cost < mine-to-oxide operating cost
Zooming in on the Unit Cost Parameter

Table 4: Breakeven Unit Cost for Each Station

<table>
<thead>
<tr>
<th>Stations</th>
<th>Low Ash Estimate</th>
<th>High Ash Estimate</th>
<th>Average Ash Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Breakeven Ash-to-Oxide Unit Cost ($/lb ash)</td>
<td>Breakeven Ash-to-Oxide Unit Cost ($/lb TREO) 70% yield</td>
<td>Breakeven Ash-to-Oxide Unit Cost ($/lb ash)</td>
</tr>
<tr>
<td>Powder River Basin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laramie River*</td>
<td>$0.0016</td>
<td>$9.2957</td>
<td>$0.0027</td>
</tr>
<tr>
<td>Dave Johnston</td>
<td>$0.0033</td>
<td>$4.8184</td>
<td>$0.0033</td>
</tr>
<tr>
<td>WyoDak</td>
<td>$0.0008</td>
<td>$2.0247</td>
<td>$0.0031</td>
</tr>
<tr>
<td>Dry Fork</td>
<td>$0.0001</td>
<td>$0.0945</td>
<td>$0.0038</td>
</tr>
<tr>
<td>Green River Basin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jim Bridger*</td>
<td>$0.0032</td>
<td>$21.2676</td>
<td>$0.0041</td>
</tr>
<tr>
<td>Naughton*</td>
<td>$0.0001</td>
<td>$0.6502</td>
<td>$0.0001</td>
</tr>
</tbody>
</table>

Notice: higher breakeven unit cost is better!
Figure 1: NPV over Unit Cost by Station
• **Open-pit mine:**
 - Building mine from ground up ⇒ infeasible
 - Refinement of REEs ⇒ expensive

• **RE extraction from coal ash:**
 - Lack of estimates in literature
 - Model finds breakeven unit costs
 ⇒ Promising results when compared to $1.17 Mountain Pass value
 - Big assumptions on initial capital costs
Conclusion

- If coal stations operate under breakeven unit costs:
 refinement of REs from coal ash \Rightarrow feasible

- Implications for Wyoming:
 1. Potential source of revenue
 2. Reduction in waste material
 \Rightarrow reduction in environmental damage
Conclusion

Questions

???
References

References (continued)

