◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Economic Feasibility of Rare Earth Element Extraction from Wyoming Coal Ash/Char

A. J. Enriquez¹, D. C. Finnoff¹, J. F. McLaughlin², D. A. Bagdonas²

Department of Economics and Finance, University of Wyoming¹

Carbon Management Institute, Energy Innovation Center, Dept. 4902, University of Wyoming²

September 27, 2016

Introduction

Background

- Wyoming: largest producer of coal in U.S.¹
- · Coal on the decline
 - Market effects
 - Regulatory changes ²
- Diversification ⇒ REE extraction from coal ash?
 - Increased global demand
 - China dominates market

¹(*EIA*, 2016) ²(*Godby et al.*, 2015)

REE Extraction Potential

- Taggart et al. (2016) sampled 3 ash sources:
 - Appalachian
 - Illinois
 - Powder River Basin (PRB)
- Results:
 - PRB: lowest average total REE content
 - PRB: highest extractable REE content

Objective

Analyze economic feasibility of RE extraction from coal ash through two economic models:

- Open-pit RE mine
- Coal stations

Conclusion

Open-Pit Mine Overview

- Small-tonnage RE mine built from scratch
- Significant start-up costs
 - Capital cost of mining
 - Capital cost of refining
- Estimates from the literature:
 - Camm, 1991
 - MIT, "Opening new mines" study
 - MIT, "Green refinement" study
- SRK Consulting's Mountain Pass Report
 - Mine-to-oxide operating cost: 1.17 US\$ per lb TREO

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Open-Pit Mine Results

Initial Mining Capital Cost \approx \$127 million Initial Refining Capital Cost \approx \$100 million

Annual Mining Operating Cost \approx \$5.5 million Annual Refining Operating Cost \approx \$387 million

Annual Revenue \approx \$265 million

 \Rightarrow Large, negative net present value (NPV) $$\approx$$ -\$1.9 billion

Coal Stations Overview

- Powder River Basin (PRB)
 - Laramie River
 - Dave Johnston
 - WyoDak
 - Dry Fork
- Green River Basin (GRB)
 - Jim Bridger
 - Naughton
- Data on RE concentrations in coal ash (in ppm) ³
 - FA, BA, and FA+BA (LA)

³Estimates provided by J.F. McLaughlin and D.A. Bagdonas - () + () + () + () + ()

Model Setup: Revenue

- Ash sources:
 - Ash generated daily (rate)
 - Existing landfill (stock)
- Rate Ash Calculations
 - ppm \Rightarrow % concentration \Rightarrow multiplied by ash production rate

 \Rightarrow converted to oxide volume

- Stock Ash Calculations
 - Landfill ash completely refined by last year of operation
 - Same conversion to oxide form

Volume per year = rate per year + fraction of stock refined per year

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conclusion

TREO Volumes

	Low Ash E	stimate	High Ash	Estimate	Average Ash Estimate			
Station	TREO TREO (lbs/year) (lbs/year) 70% yield 100% yield		TREO (lbs/year) 70% yield	TREO (lbs/year) 100% yield	TREO (tons/year) 70% yield	TREO (lbs/year) 100% yield		
Powder River Basin	Laramie River*	26225	37464	62940	89914	44582	63689	
	Dave Johnston	278504	397863	278504	397863	278504	397863	
	WyoDak Dry Fork		114965	109277	156110	94876	135538	
			154800	151408	216297	129884	185548	
Green River Basin	ver Basin Jim Bridger*		155264	260844	372634	184764	263949	
	Naughton*	26176	37394	26176	37394	26176	37394	

Table 1: Yearly TREO Volumes

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Model Setup: Revenue

- Obtained average prices of REs using:
 - Argus Media Service MetalPrices.com
 - USGS Rare Earths Minerals Yearbook
- Multiplied volume per year by average price
- Summed revenue of all REs
 - OMITTED EXCESSIVE REs
- Used 70% recovery rate ⁴
 - Heated nitric acid digestion
- Assuming 95% of product is sold

21 Sc			Crit	ical			Uncr	itical			Exce	ssive		
39 Y														
57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Light REE Heavy REE													
Light REY							Medium REY Heavy REY							
							lucca	ues I	/					

⁴as found by Taggart et al. when testing PRB ash

Coal Station Revenues

		Low As	h Estimate	High As	h Estimate	Average Ash Estimate			
Stations		Annual Revenue (\$/year) 70% Yield	Annual Revenue Critical REE Only (\$/year) 70% Yield	Annual Revenue (\$/year) 70% Yield	Annual Revenue, Critical REE Only (\$/year) 70% Yield	Annual Revenue (\$/year) 70% Yield	Annual Revenue, Critical REE Only (\$/year) 70% Yield		
Powder River Basin	Laramie River*	\$ 889,710	\$ 651,846	\$ 2,135,303	\$ 1,564,431	\$ 1,512,506	\$ 1,108,139		
	Dave Johnston	\$ 2,475,429	\$ 1,808,298	\$ 2,475,429	\$ 1,808,298	\$ 2,475,429	\$ 1,808,298		
	WyoDak	\$ 1,296,431	\$ 955,055	\$ 2,273,576	\$ 1,677,264	\$ 1,785,004	\$ 1,316,159		
	Dry Fork	\$ 1,123,246	\$ 828,597	\$ 2,620,777	\$ 1,933,426	\$ 1,872,011	\$ 1,381,012		
Green River Basin	Jim Bridger*	\$ 3,444,956	\$ 2,445,598	\$ 8,267,894	\$ 5,869,434	\$ 5,856,425	\$ 4,157,516		
	Naughton*	\$ 772,678	\$ 562,380	\$ 772,678	\$ 562,380	\$ 772,678	\$ 562,380		

Table 2: Yearly Revenue by Station

Model Setup: Costs

- Cost of RE extraction from coal ash
 - \Rightarrow largely undocumented
- Initial investment: lower
- · Breakeven ash-to-oxide unit operating costs
 - \Rightarrow using NPV equation

Model Results

Conclusion

$$NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho}\right]\pi_{it} - FC_i$$

Model Results

Conclusion

Model Setup: NPV

$$NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho}\right]\pi_{it} - FC_i$$

i = station

Model Setup: NPV

$$NPV_i = \left[\frac{1-
ho^{n+1}}{1-
ho}
ight]\pi_{it} - FC_i$$

i = station

t = year

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho}\right]\pi_{it} - FC_i$$

i = station
t = year
$$\rho$$
 = discount factor = $\frac{1}{1+r}$

$$NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho}\right]\pi_{it} - FC_i$$

i = station
t = year
$$\rho$$
 = discount factor = $\frac{1}{1+r}$
r = interest rate

$$NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho}\right]\pi_{it} - FC_i$$

i = station
t = year

$$\rho$$
 = discount factor = $\frac{1}{1+r}$
r = interest rate
 π_{it} = profit = $R_{it} - C_{it}$

$$NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho}\right]\pi_{it} - FC_i$$

i = station
t = year

$$\rho$$
 = discount factor = $\frac{1}{1+r}$
r = interest rate
 π_{it} = profit = $R_{it} - C_{it}$
 R_{it} = annual revenue

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Model Setup: NPV

$$NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho}\right]\pi_{it} - FC_i$$

i = station t = year ρ = discount factor = $\frac{1}{1+r}$ r = interest rate π_{it} = profit = $R_{it} - C_{it}$ R_{it} = annual revenue C_{it} = annual cost = $w^k Q_{it}^k$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Model Setup: NPV

$$NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho}\right]\pi_{it} - FC_i$$

i = station t = year ρ = discount factor = $\frac{1}{1+r}$ r = interest rate $\pi_{it} = \text{profit} = R_{it} - C_{it}$ R_{it} = annual revenue C_{it} = annual cost = $w^k Q_{it}^k$ w^k = breakeven unit cost parameter

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Model Setup: NPV

$$NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho}\right]\pi_{it} - FC_i$$

i = station t = year ρ = discount factor = $\frac{1}{1+r}$ r = interest rate $\pi_{it} = \text{profit} = R_{it} - C_{it}$ R_{it} = annual revenue C_{it} = annual cost = $w^k Q_{it}^k$ w^k = breakeven unit cost parameter Q_{it}^{k} = volume of ash refined

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Model Setup: NPV

$$NPV_i = \left[\frac{1-\rho^{n+1}}{1-\rho}\right]\pi_{it} - FC_i$$

i = station t = year ρ = discount factor = $\frac{1}{1+r}$ r = interest rate $\pi_{it} = \text{profit} = R_{it} - C_{it}$ R_{it} = annual revenue C_{it} = annual cost = $w^k Q_{it}^k$ w^k = breakeven unit cost parameter Q_{it}^{k} = volume of ash refined FC_i = initial investment costs

(ロ) (同) (三) (三) (三) (三) (○) (○)

Maximum Initial Investment

Assuming absence of operating costs:

$$FC_i^{max} = \left[\frac{1-\rho^{n+1}}{1-\rho}\right]R_{it}.$$

- · Choose level of investment below maximum
 - \Rightarrow allows for operating costs
- Value set at \$15 million⁵

⁵ for all stations besides Naughton

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Maximum Initial Investment

Comparison of Coal Stations			Max Initial bital Cost (\$) Low Ash Estimate	Ca	Max Initial pital Cost (\$) High Ash Estimate	Max Initial Capital Cost (\$) Average Ash Estimate		
	Laramie River*	\$	11,773,959	\$	28,257,501	\$	20,015,730	
Powder River Basin	Dave Johnston	\$	32,758,555	\$	32,758,555	\$	32,758,555	
	WyoDak	\$	17,156,304	\$	30,087,332	\$	23,621,818	
	Dry Fork	\$	14,864,453	\$	34,682,013	\$	24,773,233	
Green River	Jim Bridger*	\$	45,588,769	\$	109,413,046	\$	77,500,907	
Basin	Naughton*	\$	10,225,222	\$	10,225,222	\$	10,225,222	

Table 3: Maximum Initial Investment by Station

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Zooming in on the Unit Cost Parameter

Recall:

 C_{it} = annual costs = $w^k Q_{it}^k$ w^k = breakeven unit cost parameter Q_{it} = volume of ash refined

To calculate the breakeven unit cost:

$$w^{k} = \frac{R_{it} - \frac{FC_{i}}{\left[\frac{1-\rho^{n+1}}{1-\rho}\right]}}{Q_{it}^{k}}.$$

2 variants:

- 1. Input alternative (k = ash)
- 2. Output alternative (k = TREO)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Zooming in on the Unit Cost Parameter

Recall, from SRK Mountain Pass Report:

mine-to-oxide operating cost = \$1.17 per pound TREO

 Ash-to-oxide operating cost: ash already partly refined

 \Rightarrow ash-to-oxide operating cost < mine-to-oxide operating cost

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Zooming in on the Unit Cost Parameter

			Low Ash Estimate				High Ash Estimate				Average Ash Estimate			
Stations		Bre	reakeven Ash-to- Oxide Unit Cost (\$/Ib ash) Breakeven Ash-to- Oxide Unit Cost (\$/Ib TREO) 70% yield		Breakeven Ash-to- Oxide Unit Cost (\$/Ib ash)		Breakeven Ash-to- Oxide Unit Cost (\$/Ib TREO) 70% yield		Breakeven Ash-to- Oxide Unit Cost (\$/Ib ash)		Breakeven Ash-to- Oxide Unit Cost (\$/Ib TREO) 70% yield			
Powder River Basin	Laramie River*	\$	(0.0016)	\$	(9.2957)	\$	0.0027	\$	15.92	\$	0.0014	\$	8.50	
	Dave Johnston	\$	0.0033	\$	4.8184	\$	0.0033	\$	4.82	\$	0.0033	\$	4.82	
	WyoDak	\$	0.0008	\$	2.0247	\$	0.0031	\$	10.43	\$	0.0023	\$	6.87	
	Dry Fork	\$	(0.0001)	\$	(0.0945)	\$	0.0038	\$	9.82	\$	0.0026	\$	5.69	
Green River Basin	Jim Bridger*	\$	0.0032	\$	21.2676	\$	0.0041	\$	27.35	\$	0.0038	\$	25.56	
	Naughton*	\$	0.0001	\$	0.6502	\$	0.0001	\$	0.65	\$	0.0001	\$	0.65	

Table 4: Breakeven Unit Cost for Each Station

Notice: higher breakeven unit cost is better!

Analysis - NPV

Figure 1: NPV over Unit Cost by Station

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusion

- Open-pit mine:
 - Building mine from ground up \Rightarrow infeasible
 - Refinement of REEs \Rightarrow expensive
- RE extraction from coal ash:
 - Lack of estimates in literature
 - Model finds breakeven unit costs
 - ⇒ Promising results when compared to \$1.17 Mountain Pass value
 - Big assumptions on initial capital costs

Conclusion

Conclusion

- If coal stations operate under breakeven unit costs:
 refinement of REs from coal ash ⇒ feasible
- Implications for Wyoming:
 - 1. Potential source of revenue
 - 2. Reduction in waste material
 - \Rightarrow reduction in environmental damage

◆□→ ◆□→ ◆目→ ◆目→ ○□ ◆○へ⊙→

Model Result

Conclusion

Conclusion Questions

???

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● の < @

(ロ) (同) (三) (三) (三) (○) (○)

References

- Camm, T. (1991). Simplified cost models for prefeasibility mineral evaluations. Retrieved from http://pubs.usgs.gov/usbmic/ic-9298/html/cammfrms.htm.
- Godby, R., Coupal, R., Taylor, D., and Considine, T. (2015). The Impact of the Coal Economy on Wyoming. *Center for Energy Economics and Public Policy, Department of Economics and Finance, University of Wyoming.*
- MIT (n.d.a). Green refinement: increasing efficiency and decreasing cost and environmental damage of rare earth refinement. Retrieved from: http://web.mit.edu/12.000/www/m2016/finalwebsite/ solutions/greenrefining.html.
- MIT (n.d.b). Opening new mines: the process of mining REEs and other strategic elements. Retrieved from: http://web.mit.edu/12.000/www/m2016/finalwebsite/ solutions/newmines.html.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References (continued)

- SRK (2010). Technical economic model for the mountain pass re-start project. Retrieved from: http://www.sec.gov/Archives/ edgar/data/1489137/000095012310065239/d74323fwfwp.htm.
- Taggart, R., Hower, J., Dwyer, G. and Hsu-Kim, H. (2016). Trends in the rare earth element content of U.S.-based coal combustion fly ashes. *Environmental Science & Technology*.
- *U.S. Energy Information Administration*. (2016). Wyoming: State Profile and Energy Estimates.