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Modeling Wildfire
P�������������� M�����

Use a combination of simplified physical descriptions of fire behavior and empirical measurements. 
Most commonly used programs are based on the Frandsen-Rothermel equations, which model fire 
spread as a series of ignitions.

Benefits: Computationally fast, widely implemented, effective within well-defined scope.
Drawbacks: Inherently limited outside of original experimental scope; require empirical input; lim-
ited ability for modeling crown fire; unable to model smoldering combustion or spotting behavior.
Example programs: BEHAVE, FLAMMAP, NEXUS, FARSITE

P������-����� M�����
Use first principles of physics and thermodynamics along with explicit models of the chemistry of 
combustion to describe fire behavior. These models still require empirical work for validation.

Benefits: Can be used for surface and crown fire, and potentially smoldering combustion and spot-
ting behavior; not as limited by scope of available empirical data.
Drawbacks: Validation is still a critical challenge; computationally slow; accurate description of all 
the physical processes involved and their contributions at various spatiotemporal scales is ongoing.
Example programs: WFDS, FIRETEC, FIRESTAR, FIREBGC

Exploring New Methodologies for Studying Paleofire
Benjamin B. Muddiman

1,2
 & Cindy V. Looy

1,2,3

1. Department of Integrative Biology, University of California, Berkeley; 2. University of California Museum of Paleontology; 3. University of California & Jepson Herbaria

L����� � C���� F����
Crown base height
Canopy cover & distribution
Canopy density & fuel load

F��� B�������
Rate of spread
Fireline intensity
Torching & crowning
Fuel consumption
Smoldering vs flaming

G����� � S������ F����
Dead vs alive
Size class
Surface area to volume
Fuel bed continuity

F���� O���� I������
Burn area and patchiness
Burn intensity
Total biomass consumed
Mortality

W������
Wind
Relative humidity

T���������
Slope
Peaks & valleys
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Types of Wildfire
Crown Fuels: canopies of taller trees, emergents.

Ladder Fuels: intermediate height trees and shrubs, lower 
 branches on tall trees, vines. Critical to surface fire to crown 
 fire transition.

Surface Fuels: duff, litter, surface logs, shrubs, grasses. Most 
 consumed layer during wildfire; critical to suppression and 
 restoration efforts.

Ground Fuels: deep duff, roots, buried logs. Sometimes 
 smolders instead of undergoing flaming combustion. 

Passive Crown Fire: Surface fire that 
occasionally moves into the crown.

Active Crown Fire: Sustained crown fire 
that moves with the surface fire below.

Independent Crown Fire: Sustained 
crown fire that continues even in the 
absence of surface fire.

Introduction
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FLAMMAP simulation 
of (A) flame length, 
(B) rate of spread, 
and (C) crown fire 
activity. Warmer 
colors indicate higher 
values. Adapted from 
USGS (2008).

Glasspool & Scott 2010 GEOCARBSULF 2009 COPSE 2004

Reconstructions of paleoatmospheric Oxygen levels from Glasspool & Scott’s (2010) Oxygen proxy method, 
Berner’s (2009) GEOCARBSULF model, and Bergman et al.’s (2004) COPSE model. Time periods estimated to 
have high fire activity are indicated in purple; those with low fire activity are highlighted in light blue. PAL 
refers to present atmospheric Oxygen levels. Adapted from Belcher et al. (2012), Figure 12.1. 

PAL

Reconstruction of a Bolsovian (Middle Pennsylvanian) peat-forming forest from the Lower Radnice 
Coal. Taken from Opluštil et al. (2009), Figure 23. This spatially explicit in situ assemblage highlights 
the rich plant fossil record from this time period, which can be used to generate accurate taxon and 
landscape reconstructions. Key: 1. Cordaites borassifolius; 2. “Lepidodendron” simile; 3. Lepidophloios 
cf. acerosus; 4. Lepidodendron lycopodioides, 5. Psaronius with Pecopteris aspidioides foliage; 
6. Medullosa with Laveineopteris loshii foliage; 7. Stylocalamites with Palaeostachya gracilima cones; 
8. Lepidodendron longifolium.

Combustion of a 2.4m Douglas fir (Pseudotsuga menziesii). Wildland-Urban Fire Dynamics Simulator (WFDS) simulation 
results visualized in Smokeview (NIST fire visualization tool) and experimental results. Taken from Mell et al. (2009), 
Figure 10.
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u The Carboniferous has a rich plant fossil record that captures numerous well-preserved in situ 
assemblages

u Carboniferous charcoal records indicate prevalent wildfire associated with higher than present 
atmospheric Oxygen levels

u Our understanding of the behavior and paleoecological impacts of wildfire under hyperoxic 
conditions is limited

u Methods for modeling extant wildfires and their impacts can be applied to paleo-landscapes
u My aim is to combine experimental hyperoxic combustion work using extant plants as paleofuel 

analogs with wildfire models applied to reconstructed paleo-landscapes, in order to better 
characterize the role of fire in Carboniferous ecosystems
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