
Gabriele Morra
Department of Physics and School of Geosciences, University of Louisiana at Lafayette, United States

The Easy way to
Computational Geodynamics

Companions in the new world of Big Data:

David A. Yuen
Department of Earth Sciences, University of Minnesota
School of Env. Studies, China Univ. of Geosciences, Wuhan

Sang-Mook Lee
School of Earth Sciences, Seoul National University, S Korea

Collaborators and Students at UL at Lafayette

Dr Raphael Gottardi
Prasanna Gunawardana (Syracuse Univ.)

Brian Fischer
Daniel Conlin (Now at Exxon Mobil)

Kyle Spezia (Now at Hulliburton)

Numerical Modeling and Big Data

Numerical Modellers model the physics with forward simulations.
Key issues:

Model sizes increase. 3D models can output billions of data
points per timesteps. Timesteps can be thousands.

Performance. The computing challenge. Scalability is the key.

Parallel programming is important. Solving PDE’s requires
fastest bandwidth available.

Pedagogy. How and when should students and professional
learn numerical modeling?

Numerical Modeling and Big Data

Numerical Modellers simulate the physics with forward
simulations. Present solutions:

Model size. Selecting and compressing the output. Dimension
reduction. I will present one example. Future machine
learning. Can we use entropy to measure how much to record?

Performance. Hierarchical methods, like multigrid and
multipole. I will show one example. New algorithms also
welcome. Big problem.

Parallel programming. MPI is the main tool. GPUs and MICs
also used. Heterogeneous parallel computing is the future.

Pedagogy. Python and its libraries: Numpy, Matplotlib,
Cython, mpi4py, ... We don’t need Matlab anymore. Python
is easier to learn and to use. New languages are emerging.

'

Geodynamic Motivation
Porous systems Two phase flow

Morra et al., 2011SNOW, data from the Snow
Avalanche Institute, Davos

Deep
seismicity

Gottardi al., 2011

The computing challenge:
particle in cell

1. PDE’s solution in a lattice

2. Particles advection

3. Projection of fields to and
from the lattice

W1=1/L1

L2

L4
L3

Particle

Node 1 Node 2

Node 3 Node 4

FParticle = (FN1* W1+ FN2* W2+ FN3* W3+ FN4* W4)/(W1+W2+W3+W4)

W2=1/L2

W3=1/L3

W4=1/L4

L1

pOld

pNew

Forward: pNew=POld+vOld∆t

Backward: pNew=POld+vNew∆t

pOld

pNew

vOld

vNew

Centered: pNew=POld+ 0.5 (vOld+vNew) ∆t

pOld

pNewvAve

ix, iy ix+1, iy

ix+1, iy+1ix, iy+1

Vx
SideX(ix, iy) Vx

SideX(ix+1, iy)

Vy
SideY(ix, iy+1)

Vy
SideY(ix, iy)

∆x

Side YSid
e X

∆y Vy
SideX(ix, iy) Vy

SideX(ix+1, iy)

Sid
e X

Side Y

Vx
SideY(ix, iy)

Vx
SideY(ix, iy+1)

εxx=∆Vx
SideX/∆x

εyy=∆Vy
SideY/∆y

εxy=1/2(∆Vx
SideY/∆y+∆Vy

SideX/∆x)

The computing challenge:
particle in cell

o Scalability

1. Finite Differences and Finite Elements span maximum three
orders of magnitude in space (109 cells = 10003).

2. However particles allow increasing details. Particle advection
can be immediately vectorized and do not weight on the
overall computing time.

3. Projection from and to lattice can be vectorized with a
compact procedure.

o Implemented in Numerical Python. Easy to program.

The computing challenge:
particle in cell

Implementation of the cell ßà particle projections using NumPy.

One line.
Vectorized.
Extremely fast.

Compact.
Easy to
understand
and modify.
Minimum
memory
requirements

W1=1/L1

L2

L4
L3

Particle

Node 1 Node 2

Node 3 Node 4

FParticle = (FN1* W1+ FN2* W2+ FN3* W3+ FN4* W4)/(W1+W2+W3+W4)

W2=1/L2

W3=1/L3

W4=1/L4

L1

The computing challenge:
particle in cell

o Applications to Mantle flow (nonlinear Stokes), Porous media
flow (Darcy equation) and suspension dynamics.

Gunawardana and Morra, submitted
to Journal of Geodynamics

G. Morra,
from Springer Book,
soon in press.

Suspended
particles

Vectorized Upwind scheme
vs pure particles method

The computing challenge.
How is Numerical Python so fast?

1. Vectorization of most operations. NO LOOPS.
In [27]: %timeit c=addArray(a,b) #standard python
1 loops, best of 3: 639 ms per loop
In [28]: %timeit c=a+b #NumPy arrays broadcasting
100 loops, best of 3: 3.74 ms per loop

2. Cython (=C in Python) implementation of difficult routines.

3. Lower understanding of the machine operations.

4. Many extension libraries (mpi4py, pyCuda, petsc4py).

Considerations on 3D modeling

N=L/RES Number Of
Elements

Solution
Approach

Earth
L= 104km
RES:10km

Finite
Element

Volume
Cells
O(N3)

Sparse Matrix
Multigrid
Inversion time
O(N3)

N= 103

CPU time
O(109)

Boundary
Element

Surface
Panels
O(N2)

Dense Matrix
Inversion time
O(N2 * N2)

N= 103

CPU time
O(1012)

FEM vs. Fast Multipole BEM

N=L/RES Number Of
Elements

Solution
Approach

Earth
L= 104km
RES:10km

Finite
Element

Volume
Cells
O(N3)

Sparse Matrix
Multigrid
Inversion time
O(N3)

N= 103

CPU time
O(109)

Boundary
Element

Surface
Panels
O(N2)

Multipole
Inversion time
O(2N2logN)

N= 103

CPU time
O(107) p.s.

CPU time required for each timestep

Furthermore it scales linearly on an MPI environment!

Immediate 3d modeling
with NumPy

1. Tree representation

2. Fast Integration

3. Lagrangian motion

4. Cartesian representation

Immediate 3d modeling with NumPy

1. Tree representation:
from scipy import spatial
x, y, z = np.mgrid[0:5, 2:8, 3:7]
tree = spatial.KDTree(zip(x.ravel(), y.ravel(), z.ravel()))

2. Many-body calculations enable N-logN scaling.

3. Fast Integrals with NumPy

4. MPI Parallelization

Applications in global geodynamics and
multiphase flow Morra et al., PEPI, 2010

Morra et al., 2015

Morra et al., 2012

Fast computing allows large scale models
Crustal Dynamics

Morra et al., 2012

Morra et al., 2015

Heterogeneous Short Wave Instability

Homogeneous Long wave Instability
Every bubble made by 1000 triangles!

Learning Fast Computing

Some universities offer a mandatory “Introduction to
Computer Science and Programming” at the beginning
of every science program. Future geoscientists will use
computing for every task. The earlier they familiarize
with how computers “think”, the sharper they will use
their computing tools.

A new generation of programming languages is emerging and replacing C,
C++ and Fortran. Python is the most used, but other options have emerged
emerge such as Julia and Ruby, or Java based Scala and Hadoop. Presently
Python is the easiest, most compact and powerful and is replacing the glorious
but not free and not open Matlab.

Many tools for machine learning are now
mainly interfaced with Python.
For example TensorFlow, from Google,
that is open source and free to use, and
allows organizing visual data/model output.

Conclusions and Perspectives
• Students and professionals have now more accessible tools to learn

programming, which are simple and accessible new languages.

• Also hybrid approaches such as PARTICLES IN CELL and FAST
MULTIPOLE -- BOUNDARY ELEMENTS can be implemented
without great overhead because can be completely vectorized.

• For example by using Python geodynamics codes, in 2D as well as in
3D, are compact, run fast, are parallelized in a straightforward way.

• Most open projects are now interfaced, and sometimes directly
developed, in Python and similar.

• To use Numerical Python and associated libraries is presently the
EASY WAY TO learn COMPUTATIONAL GEODYNAMICS.

New initiatives
Gabriele Morra

Introduction to Python
Geodynamics

Implementations for Fast Computing

September 24, 2016

Springer

Subduction
Dynamics

Gabriele Morra, David A. Yuen, Scott D. King, Sang
Mook Lee and Seth Stein

Editors

From Mantle Flow to Mega Disasters

Special Volume with
numerical techniques
on geodynamics.

An introductory level
book on Geodynamics
with Python, specifically
for undergraduate students.
Lecture Notes in Earth Sciences
Springer Verlag.

Big Data Training and International
Conference on Haikou, Hainan Island,
South China Sea. January 4 to 11, 2017
http://mcdata-consult.com

