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Numerical Modeling and Big Data

Numerical Modellers model the physics with forward simulations. 
Key issues:

Model sizes increase. 3D models can output billions of data 
points per timesteps. Timesteps can be thousands. 

Performance. The computing challenge. Scalability is the key.

Parallel programming is important. Solving PDE’s requires 
fastest bandwidth available. 

Pedagogy. How and when should students and professional 
learn numerical modeling?



Numerical Modeling and Big Data

Numerical Modellers simulate the physics with forward 
simulations. Present solutions:

Model size. Selecting and compressing the output. Dimension 
reduction. I will present one example. Future machine 
learning. Can we use entropy to measure how much to record?

Performance. Hierarchical methods, like multigrid and 
multipole. I will show one example. New algorithms also 
welcome. Big problem.

Parallel programming. MPI is the main tool. GPUs and MICs 
also used. Heterogeneous parallel computing is the future. 

Pedagogy. Python and its libraries: Numpy, Matplotlib, 
Cython, mpi4py, ...  We don’t need Matlab anymore. Python 
is easier to learn and to use. New languages are emerging.



'

Geodynamic Motivation
Porous systems Two phase flow

Morra et al., 2011SNOW, data from the Snow 
Avalanche Institute, Davos

Deep 
seismicity

Gottardi al., 2011



The computing challenge: 
particle in cell

1. PDE’s solution in a lattice

2. Particles advection

3. Projection of fields to and 
from the lattice
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The computing challenge: 
particle in cell

o Scalability

1. Finite Differences and Finite Elements span maximum three
orders of magnitude in space (109 cells = 10003).

2. However particles allow increasing details. Particle advection
can be immediately vectorized and do not weight on the
overall computing time.

3. Projection from and to lattice can be vectorized with a
compact procedure.

o Implemented in Numerical Python. Easy to program.



The computing challenge: 
particle in cell

Implementation of the cell ßà particle projections using NumPy.

One line.
Vectorized.
Extremely fast.

Compact.
Easy to 
understand
and modify.
Minimum 
memory 
requirements
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The computing challenge: 
particle in cell

o Applications to Mantle flow (nonlinear Stokes), Porous media
flow (Darcy equation) and suspension dynamics.

Gunawardana and Morra, submitted
to Journal of Geodynamics 

G. Morra, 
from Springer Book, 
soon in press. 

Suspended
particles

Vectorized Upwind scheme
vs pure particles method



The computing challenge.
How is Numerical Python so fast?

1. Vectorization of most operations. NO LOOPS.
In [27]: %timeit c=addArray(a,b) #standard python 
1 loops, best of 3: 639 ms per loop 
In [28]: %timeit c=a+b #NumPy arrays broadcasting 
100 loops, best of 3: 3.74 ms per loop 

2. Cython (=C in Python) implementation of difficult routines.

3. Lower understanding of the machine operations.

4. Many extension libraries (mpi4py, pyCuda, petsc4py).



Considerations on 3D modeling

N=L/RES Number Of 
Elements 

Solution 
Approach

Earth
L= 104km
RES:10km

Finite 
Element

Volume 
Cells 
O(N3)

Sparse Matrix  
Multigrid 
Inversion time 
O(N3)

N= 103

CPU time 
O(109)

Boundary 
Element

Surface 
Panels
O(N2)

Dense Matrix
Inversion time 
O(N2 * N2)

N= 103

CPU time 
O(1012)



FEM vs. Fast Multipole BEM

N=L/RES Number Of 
Elements 

Solution 
Approach

Earth
L= 104km
RES:10km

Finite 
Element

Volume 
Cells 
O(N3)

Sparse Matrix  
Multigrid
Inversion time 
O(N3)

N= 103

CPU time 
O(109)

Boundary 
Element

Surface
Panels 
O(N2)

Multipole 
Inversion time 
O(2N2logN)

N= 103

CPU time 
O(107) p.s.

CPU time required for each timestep

Furthermore it scales linearly on an MPI environment!



Immediate 3d modeling 
with NumPy

1. Tree representation

2. Fast Integration

3. Lagrangian motion

4. Cartesian representation



Immediate 3d modeling with NumPy

1. Tree representation:
from scipy import spatial
x, y, z = np.mgrid[0:5, 2:8, 3:7]
tree = spatial.KDTree(zip(x.ravel(), y.ravel(), z.ravel()))

2. Many-body calculations enable N-logN scaling.

3. Fast Integrals with NumPy

4. MPI Parallelization 



Applications in global geodynamics and 
multiphase flow Morra et al., PEPI, 2010

Morra et al., 2015

Morra et al., 2012



Fast computing allows large scale models
Crustal Dynamics

Morra et al., 2012

Morra et al., 2015 

Heterogeneous Short Wave Instability

Homogeneous Long wave Instability
Every bubble made by 1000 triangles!



Learning Fast Computing

Some universities offer a mandatory “Introduction to 
Computer Science and Programming” at the beginning 
of every science program. Future geoscientists will use 
computing for every task. The earlier they familiarize 
with how computers “think”, the sharper they will use 
their computing tools. 

A new generation of programming languages is emerging and replacing C, 
C++ and Fortran. Python is the most used, but other options have emerged 
emerge such as Julia and Ruby, or Java based Scala and Hadoop. Presently 
Python is the easiest, most compact and powerful and is replacing the glorious 
but not free and not open Matlab.

Many tools for machine learning are now 
mainly interfaced with Python. 
For example TensorFlow, from Google,
that is open source and free to use, and 
allows organizing visual data/model output. 



Conclusions and Perspectives
• Students and professionals have now more accessible tools to learn 

programming, which are simple and accessible new languages. 

• Also hybrid approaches such as PARTICLES IN CELL and FAST 
MULTIPOLE -- BOUNDARY ELEMENTS can be implemented 
without great overhead because can be completely vectorized.

• For example by using Python geodynamics codes, in 2D as well as in 
3D, are compact, run fast, are parallelized in a straightforward way.

• Most open projects are now interfaced, and sometimes directly 
developed, in Python and similar. 

• To use Numerical Python and associated libraries is presently the 
EASY WAY TO learn COMPUTATIONAL GEODYNAMICS. 



New initiatives
Gabriele Morra

Introduction to Python
Geodynamics

Implementations for Fast Computing

September 24, 2016

Springer

Subduction  
Dynamics

Gabriele Morra, David A. Yuen, Scott D. King, Sang 
Mook Lee and Seth Stein

Editors

From Mantle Flow to Mega Disasters

Special Volume with 
numerical techniques 
on geodynamics.

An introductory level
book on Geodynamics
with Python, specifically
for undergraduate students.
Lecture Notes in Earth Sciences
Springer Verlag.

Big Data Training and International 
Conference on Haikou, Hainan Island, 
South China Sea. January 4 to 11, 2017
http://mcdata-consult.com


