Go Small or Go Home

How Small is Too Small for Isotope Ratio Analysis?

John Valley UW - Madison

Tyler Blum, David Reinhard

CAMECA IMS- 3f, -7f * IMS- 1270, -1300 NanoSIMS

SHRIMP

SIMS Uncertainty ¹⁸O/¹⁶O

Additional factors: Deadtime, QSA, IMF

Precision of Analyses vs. Primary Beam Current

Atom Probe Tomography

Quantitative Spatially resolved, sub-nm Single-atom scale Mass-spectrometry

Nano-Geochronology Evaluate Pb mobility in zircon

> LEAP 3000 LEAP 4000 LEAP 5000

CAMECA Instruments Factory, Madison, WI

Valley et al. 2015 Am Min

CAMECA°

Valley et al. 2015 Am. Min. Valley et al. 2016, GSA, Denver

Small is always better..... until it isn't.

How Small is Too Small for Isotope Ratio Analysis?

Depends on the application:
<≈ 0.5 µm for δ¹⁸O at natural abundance
<≈ 10 nm for ²⁰⁷Pb/²⁰⁶Pb in Archean clusters

