

#### RATIONALE

- Water resource use and management is critical issue in the 21st Century - the 'Water Century' - in which "ensuring an adequate quantity and quality of freshwater for sustaining all forms of life is a growing challenge" (National Science Foundation, 2005, pg. 6) These challenges have led to increasing emphasis on
- systemic STEM education reform at the postsecondary level (National Research Council, 2012)
- Research has shown that water literacy in the United States remains underdeveloped
- Many studies of STEM-informed decision-making have been conducted at the K-12 level (Christensen & Rundgren, 2015; Eggert & Bögeholz, 2009; Grace, 2009; Grace & Ratcliffe, 2002; Gresch & Bögeholz, 2013; Gresch et al., 2013; Jime'nez-Aleixandre, 2002; Seethaler & Linn, 2004; Seigel, 2006) but fewer such studies have been conducted with undergraduate students (Halverson et al., 2009; Sadler & Zeidler, 2005)
- More work is therefore needed to understand of STEM-informed decision-making about water issues among undergraduate students

### SCIL/AECN/NRES 109 – Water in Society

- New, interdisciplinary, introductory-level water course serving both STEM majors and non-majors at UNL
- General education course focused on global and local issues related to water and it's role in society
- Two course objectives:
- social, economic, cultural, and civic dimensions, to make informed decisions about water issues
- General education requirements
  - reasonable.
- ACE #8 Explain ethical principles, civics, and stewardship, and their importance to society.
- Course highlights
  - Use computer-based models and simulations to learn core, introductory hydroscience concepts
  - Engage with contemporary economic, policy, social, and cultural dimensions of water
  - Benefit from expertise of scientific, communications, and industry experts

  - Use structured decision-making frameworks to propose solutions to local, regional, and global water challenges Participate in site visits and field trips to local municipal water facilities
  - Work in small-group teams to conduct independent research
  - Present coursework to scientists, policymakers, and stakeholders at the Water for Food Global conference

## **Fostering Undergraduate Students' Disciplinary Learning and Water Literacy**

University of Nebraska-Lincoln

#### **CONCEPTUAL FRAMEWORK**

#### Water Literacy

An enhanced capacity, both at the individual and collective levels, to make effective decisions grounded in STEMinformed analyses of complex, real-world challenges associated with socio-hydrological systems

- Component of science literacy in the Food-Energy-Water-Nexus
- Grounded in broader perspectives on science literacy
- Science education (Bybee, McCrae, Laurie, 2009; Feinstein, 2010; Rudolph, 2014)
- Decision sciences (Arvai et al., 2004)

#### "Wide Dynamic" View of Interdisciplinary **Teaching and Learning** about Water





**Framework for Multi-Criteria Decision-Making about Water Issues** 

21242

1. Explain fundamental hydrologic concepts and engage in scientific practices, including posing and answering scientific questions, exploring phenomena, analyzing and making inferences from data, and determining validity of conclusions 2. Engage effectively in principled analysis of and reasoning about socio-hydrologic systems, including their scientific, ethical,

ACE #4 - Use scientific methods and knowledge of the natural and physical world to address problems through inquiry, interpretation, analysis, and the making of inferences from data, to determine whether conclusions or solutions are



Empirical research to better understand the nature of, and strategies to support, undergraduate students' learning of disciplinary concepts and decision-making competencies



#### RESEARCH

- DISCIPLINE- and DESIIGN-based education research (D<sup>2</sup>BER)
- Iterative, empirically-based course development
- Research questions
- 1. To what extent do undergraduate students learn to engage in more effective decisionmaking about socio-hydrological issues?
- 2. How do undergraduate students engage in decision-making about socio-hydrological issues? Which course- and student-level factors influence their STEM-informed decision-making?
- Pre-/post-course evaluation
  - Assessment of core, introductory hydroscience concepts
  - Inventories of Basic Dispositions (IBD) for General Science
  - Decision making tasks
  - Clinical interviews

- 10.1080/00219266.2014.923486
- doi:10.1080/09500690701744595
- doi:10.1080/09500690210134848
- Education, 35(15), 2587-2607.
- doi:10.1080/09500690802178123
- 1190. doi:10.1080/09500690210134857
- Council. (1996).
- 71-93.

# SCIENCE III

| ТM |   |
|----|---|
|    | - |
|    |   |

undergraduate

Instructional materials and

Results from

Outcomes Short-term Improved STEMinformed analyses of socio-hydrological systems (students)

FOOD

Empirically- and theoreticallyinformed SCIL 109 course

Long-term Improved science literacy in the United States

Increased capacity for fostering science literacy amongst undergraduates

## REFERENCES

• Christenson, N., & Rundgren, S-N.C. (2015). A framework for teachers' assessment of socio-scientific argumentation: An example using the GMO issue. Journal of Biological Education, 49(2), 204-212, DOI:

Eggert, S., Bögeholz, S. (2009). Students' use of decision-making strategies with regard to socioscientific issues: An application of the Rasch partial credit model. *Science Education, 2*, 230-258. • Grace, M. (2009). Developing high quality decision-making discussions about biological conservation in a normal classroom setting. International Journal of Science Education, 31, 551–570.

• Grace, M.M. & Ratcliffe, M. (2002). The science and values that young people draw upon to make decisions about biological conservation issues. International Journal of Science Education, 24, 1157–1169.

• Gresch, H. & Bögeholz, S. (2013). Identifying non-sustainable courses of action: A prerequisite for decisionmaking in education for sustainable development. Research in Science Education, 43, 733-754. • Gresch, H., Hasselhorn, M., & Bögeholz, S. (2013). Training in Decision-making Strategies: An approach to enhance students' competence to deal with socioscientific issues. International Journal of Science

• Halverson, K.L., Siegel, M.A., Freyermuth, S.K. (2009). Lenses for Framing Decisions: Undergraduates' decision making about stem cell research. International Journal of Science Education, 31, 1249–1268.

• Jimenez-Aleixandre, M.-P. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24, 1171-

• King, E.G., O'Donnell, F.C., & Caylor, K.K., (2012). Reframing hydrology education to solve coupled human and environmental problems. Hydrology and Earth System Sciences, 16, 4023–4031. • National science education standards. Washington, D.C.: The National Academies Press.

National Science Foundation (2005). Complex environmental systems: Pathways to the future. Advisory Committee for Environmental Research and Education (AC-ERE). Washington, DC. National Research

• Sadler, T. & Zeidler, D. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89,

• Seethaler, S. & Linn, M. (2004). Genetically modified food in perspective: an inquiry-based curriculum to help middle school students make sense of tradeoffs. International Journal of Science Education 26, 1765-1785. doi:10.1080/09500690410001673784

• Siegel, M.A. (2006). High school students' decision making about sustainability. Environmental Education *Research, 12*, 201–215. doi:10.1080/13504620600689003