THE PROVENANCE OF GLACIAL TILL DEPOSITED IN ONG VALLEY, CENTRAL TRANSANTARCTIC MOUNTAINS DETERMINED BY LA–ICP–MS OF DETRITAL ZIRCON

Evan Miranda

Contributors:

- Dr. Daniel Morgan – Earth and Environmental Sciences, Vanderbilt University
- Jaakko Putkonen – Geology and Geological Engineering, University of North Dakota
- Greg Balco – Berkeley Geochronology Center, University of California, Berkeley
- Warner Cribb – Department of Geosciences, Middle Tennessee State University

Acknowledgements:

- Department of Earth and Environmental Sciences, Vanderbilt University
- Vaughan Endowment Fund
- NSF: PLR–0838968 and PLR–0838757
Ong Valley: Location and Geology

Bibby et al. 2016

Geologic Map: Barrett et al. 1970
Motivating Questions:

- How old are the glacial deposits in Antarctic Dry Valleys?
- What was the former extent of past glaciation?
- What is the provenance of these glacial tills?
- Has the source changed over time?
- Will the combination of cosmogenic nuclides and zircon ages prove useful in this geologic setting?
Till Ages – Cosmogenic Nuclide Exposure Dates

YOUGEST DRIFT

11-13 ka

MIDDLE DRIFT

> 1.1 Ma

OLDEST DRIFT

> 1.57 Ma

Bibby et al. 2016
Methods:

- Extract bulk sedimentary samples
 - Sieve, hand wash + sonic-bath
- 5% HNO$_3$ + 5% HCl pre-treatment*
- Hand magnet => remove magnetite
- Density separation
 - LST Heavy Liquid [2.85g/cm3]
 - Heavy-mineral fraction
- Frantz Magnetic Separator
 - Up to >1.6amps
 - Non-magnetic samples
- Acid purification treatment – HNO$_3$ + HF + HCl*
- Hand pick zircon grains => mount in epoxy disk
- Grind, polish and carbon coat the mount => SEM
- Determine mineral identity using BSE detector
- Image grains using Gatan MonoCL detector
- In situ analysis by LA-ICP-MS
- Data reduction using Glitter
 - U238/Pb206, U235/Pb207, Pb206/Pb207*
OLD UNIT (Pits 5 & 6), n = 225
MIDDLE UNIT (Pits 1 & 2), n = 97

Number of occurrences vs. age (Ma) for the MIDDLE UNIT (Pits 1 & 2), with relative probability on the right axis.
YOUNG UNIT (Pits 11 & 12), n = 82
ICE BELOW YOUNG UNIT (Pits 11ice & 12ice),
n = 108
ISOPLOT – Unmix Ages

<table>
<thead>
<tr>
<th>OLD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>±2s</td>
<td>fraction</td>
<td>±2s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>2.2</td>
<td>0.27</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>847.1</td>
<td>5.3</td>
<td>0.14</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1614.9</td>
<td>17</td>
<td>0.11</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2397</td>
<td>36</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2750.2</td>
<td>19</td>
<td>0.09</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3092.9</td>
<td>6.9</td>
<td>0.36</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>relative misfit</td>
<td></td>
<td></td>
<td></td>
<td>3648.180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIDDLE											
Age	±2s	fraction	±2s								
564.3	3.6	0.22	0.09								
870	7.9	0.12	0.07								
1694	22	0.10	0.07								
2291	43	0.03	0.04								
2765.5	16	0.14	0.08								
3057.9	9.1	0.38	---								
relative misfit				1972.815							

YOUNG											
Age	±2s	fraction	±2s								
561.8	3.7	0.26	0.11								
958.8	13	0.10	0.07								
1666	21	0.16	0.09								
2008	52	0.01	0.02								
2489	43	0.02	0.03								
3022.7	8.8	0.45	---								
relative misfit				1116.946							

ICE											
Age	±2s	fraction	±2s								
565.4	5.2	0.12	0.07								
1387	23	0.07	0.05								
1694	43	0.03	0.03								
2402.9	20	0.07	0.05								
2666.5	9.5	0.25	0.10								
3038.8	7.6	0.45	---								
relative misfit				1209.313							
In Summary:

- Recovered over 500 zircon grains from:
 - Bulk sedimentary samples
 - Large chunks of ice
- There is a similar population distribution for all three of our tills
 - Suggests flow patterns haven’t changed in >1.57 million years
- Ice from below the young unit is missing grains from ~600-1200Ma
 - Inferred that this is due to a lack of aeolian input
- The pairing of U/Pb and Pb/Pb ages of zircon with cosmogenic nuclide exposure ages is a useful method for determining
 - Provenance data
 - If glacial flow patterns have changed over time
- We will continue to collect and analyze zircon until we have ≥120 grains per sedimentary unit; measure grain size (SEM)