Exceptional service in the national interest

Site Characterization for the Deep Borehole Field Test

Kristopher L. Kuhlman

Sandia National Laboratories September 26, 2016; SAND2016-9387C

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

What is the Deep Borehole Field Test?

What are we trying to observe?

How are we planning on measuring it?

How is this field test unique?

Deep Borehole

Disposal Concept

- Possible robust isolation from shallow geosphere
- Barriers
 - Depth
 - Salinity & perm. gradients
- Lack of driving forces
- Diffusion dominated

Field Test

- 8.5" & 17" boreholes to 5 km
- Technical demonstration
 - Drilling
 - Sampling & in situ testing
 - Surface/downhole handling
- No waste

Deep Borehole Conceptual Profiles

Sandia National

Observed Profiles

Bulk Permeability Decreases with Depth

Observed Profiles

Bulk Permeability Decreases with Depth

Bulk Permeability Increases with Scale Clauser (1992)

Observed Profiles

Bulk Permeability Decreases with Depth

Bulk Permeability Increases with Scale Clauser (1992)

Upscaling permeability data vs. Geochemical composition and natural tracers data

Sampling Profiles

- Borehole Geophysics
- Logging During Drilling
 - Mud fluids/tracers/dissolved gases

Basement Rock Samples

- Coring (5%, 150 m total)
- Drill Cuttings/Rock Flour (XRD + XRF)

Formation Fluid Samples

- Pumped from high-perm intervals
- Extracted from cores

Formation Fluid (& Mud) Analytes

- Onsite fluid density/temperature
- Major ions & trace metals
- C, N, S, Sr & U isotope ratios
- ⁴He buildup in fluids & qtz. crystals
- Stable water isotopes

In Situ Testing

- Flowing Borehole Logs
 - Salinity dilution & temperature diffusion

Hydrologic Tests

- Low-perm pulse tests (5)
- High-perm pumping tests (5)
- Estimate:
 - Static formation pressure
 - Permeability / compressibility / skin
- Injection-Withdrawal Tracer Tests (2)
- Hydromechanical Packer Test (1)
 - Estimate k_{DRZ}(σ)
- Hydraulic Fracturing Stress Tests (5)
 - Estimate $\sigma_h \& \sigma_H$ magnitudes
 - Test unfractured & existing fracture intervals

Disturbed Rock Zone

⁹

Summary and Uniqueness

DBFT Likely Different From:

- Oil/gas or mineral exploration
- Geothermal exploration
- Shallow drilling/testing

DBFT Characterization Approach

- Not exhaustive permeability characterization
- Seeking *geochemical* evidence of system isolation
- Use "off-the-shelf" approaches when available

DBFT Goals

- Drill straight large-diameter boreholes to 5 km depth
- Demonstrate sample collection (cores + formation fluid)
 - Enough samples
 - Low enough contamination level
- Demonstrate in situ testing at depth (3 to 5 km)

(low perm., low porosity rocks)

(low geothermal gradient)

(high p, high σ , deep, breakouts)

(scaling)