Chloride Deposits on Mars: Chlorine from the Sky, or Chlorine from the Rocks?

Mohit Melwani Daswani Edwin S. Kite

Session 102, # 3 GSA Denver – 26th September 2016

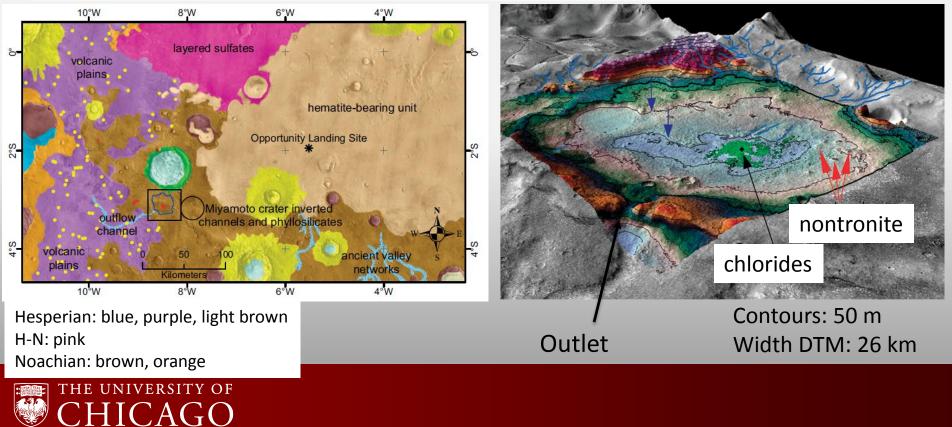
Department of the Geophysical Sciences

Overview/Problem

Chloride-rich deposits are abundant on the highlands of Mars

...But their origin is unconstrained

...Source of Cl? Environmental context?


Chloride deposits present on Mars

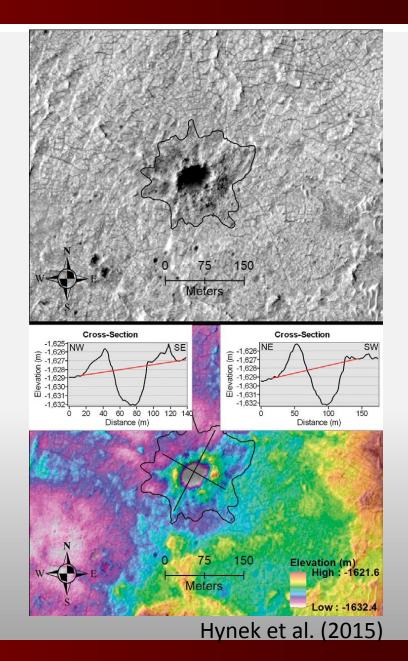
Geology, published online on 5 August 2015 as doi:10.1130/G36895.1

Late-stage formation of Martian chloride salts through ponding and evaporation

Brian M. Hynek^{1,2}, Mikki K. Osterloo², and Kathryn S. Kierein-Young²

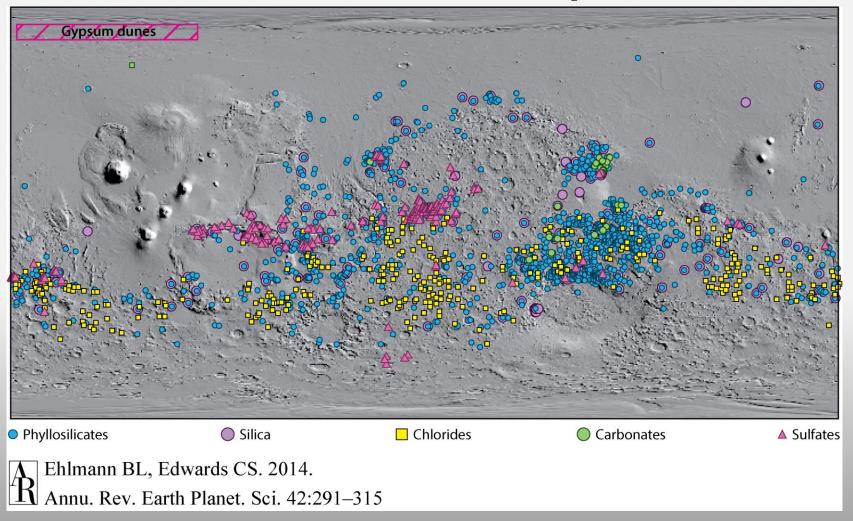
¹Department of Geological Sciences, University of Colorado–Boulder, UCB399, Boulder, Colorado 80309, USA ²Laboratory for Atmospheric and Space Physics, University of Colorado–Boulder, 3665 Discovery Drive, Boulder, Colorado 80303, USA

Deposits can be quantified


1225 km² basin

Chloride deposit: 4 m max thickness 29.83 km² ~ 0.12 km³ ~ 1.4 × 10¹¹ kg NaCl (assuming 45 % porosity)

Lake: 35.87 km³ 35.87 ×10¹² kg H₂O


Salinity: ~ 4 g NaCl/kg H₂O

Hynek et al. (2015) Geology

Chlorides are widespread

A. Basaltic minerals (chlorapatite)
 L→ Weathered/leached by water
 L→ Discharged into lakes

B. Volcanic outgassing (HCI) Aerosols Lo Dry deposition on surface (CIO_4^- ?) Lo "Washed" into lakes

Cl abundance (e.g. Filiberto +, 2016, *M&PS*)

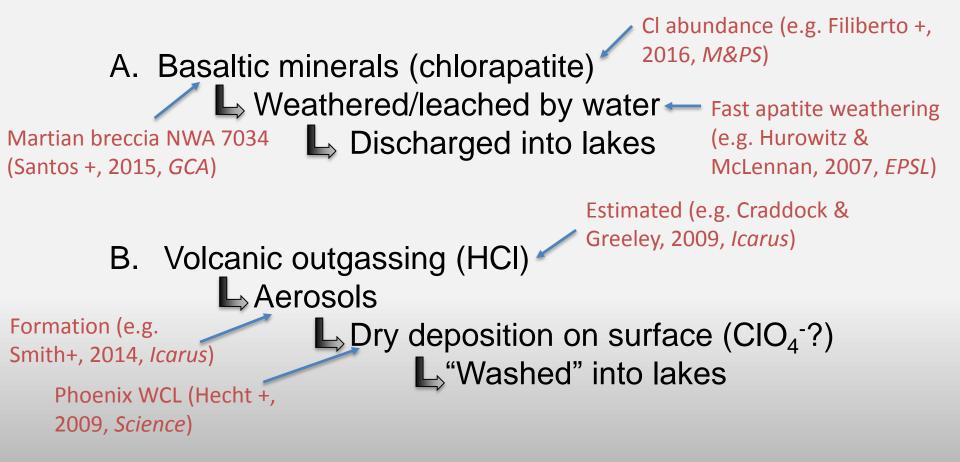
A. Basaltic minerals (chlorapatite)

Weathered/leached by water - Fast apatite weathering

L→ Discharged into lakes

Fast apatite weathering (e.g. Hurowitz & McLennan, 2007, EPSL)

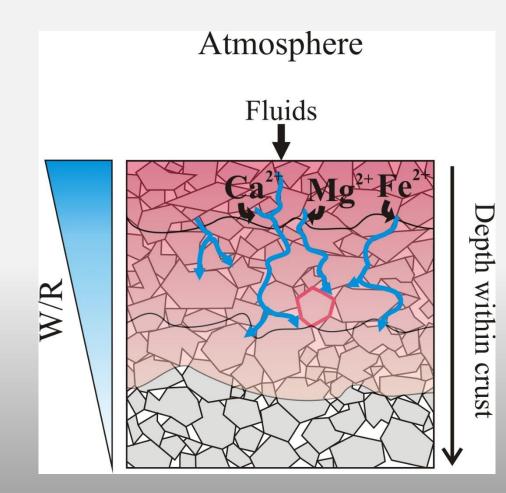
B. Volcanic outgassing (HCI)


L⇒ Aerosols

Melwani Daswani & Kite, in prep.

Martian breccia NWA 7034

(Santos +, 2015, GCA)

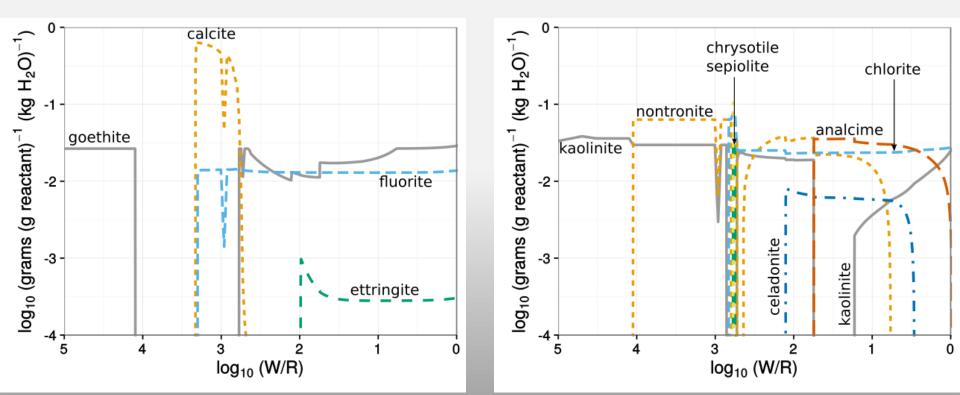


Weathering basalt

Thermochemical modeling method

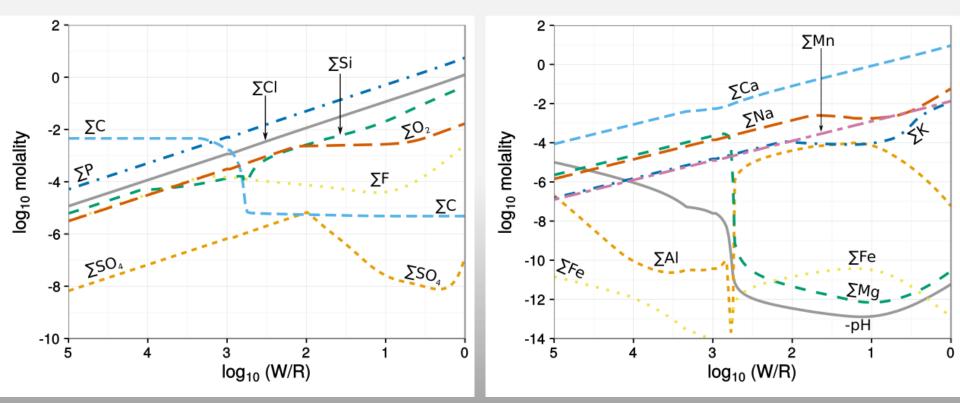
- CHIM-XPT code (Reed, 1998)
- Debye-Hückel theory

Soltherm thermodynamic database (mostly derived from Holland & Powell 2011 and ASU GEOPIG
SUPCRT database)


Allows computations of:

- mineral stabilities and precipitation
- aqueous speciation
- mineral-gas-liquid equilibria
- enthalpies, P-T, pH, Eh

Result: minerals formed by weathering


Incongruent dissolution, no apatite re-precipitation allowed 60 mbar initial pCO₂ 0.01 °C Melwani Daswani & Kite, in prep.

Result: evolution of the fluid composition

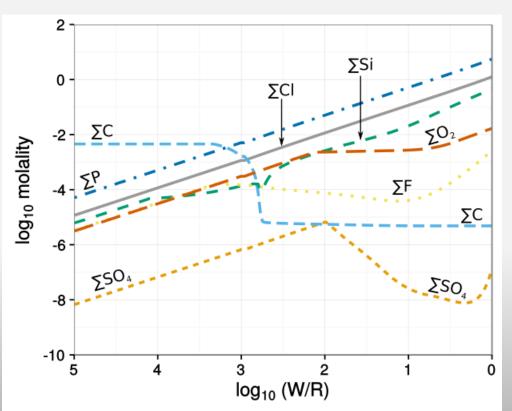
Incongruent dissolution, no apatite re-precipitation allowed 60 mbar initial pCO_2 0.01 °C Melwani Daswani & Kite, in prep.

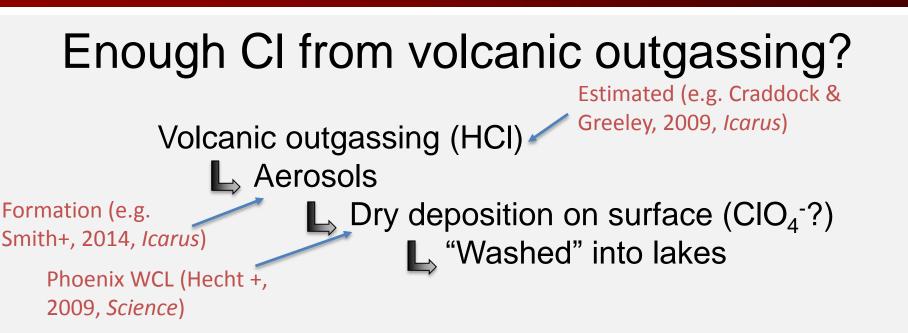
Quantifying H₂O and CI required

At W/R = 1

Melwani Daswani & Kite, in prep.

 Σ Cl = 1.26 mol/kg H₂O


 $= 4.48 \times 10^{-2} \text{ kg Cl/ kg H}_2\text{O}$


Assuming all Cl in solution precipitates as NaCl in the basin (36 km³) we were looking at previously (0.12 km³ salt, 45 % porosity): 8.6 × 10¹⁰ kg Cl:

1.9 × 10¹² kg H₂O required = $1.9 \times 10^9 \text{ m}^3 \text{ H}_2\text{O}$ ≈ 0.05 times the volume of the basin

(\approx 1.6 m H₂O across basin)

Enough CI from volcanic outgassing?

Estimated (e.g. Craddock & Greeley, 2009, *Icarus*)

Volcanic outgassing (HCI) -

ightarrow Aerosols

Formation (e.g. Smith+, 2014, *Icarus*) Dry deposition on surface (ClO₄-?)
"Washed" into lakes

Phoenix WCL (Hecht +, 2009, *Science*)

Table 1

Extrusive volumes (10⁶ km³) of martian volcanic material with time^a.

Epoch	Extruded volume	Mass ^b (10 ²² g)
Late Amazonian	2.11	0.7
Middle Amazonian	8.49	2.8
Early Amazonian	15.76	5.2
Late Hesperian	15.63	5.16
Early Hesperian	17.65	5.82
Late Noachian	7.77	2.56
Middle Noachian	1.39	0.46
Early Noachian	?	?
Total	68.8	22.7

^a Data from Greeley and Schneid (1991).

^b Assumes a density of 3.3 g/cm³.

Table 3

Mass (1018 g) of martian volcanic gases released through time.

Epoch	Constituent	
	HCI	
Late Amazonian	0.06	
Middle Amazonian	0.22	
Early Amazonian	0.42	
Late Hesperian	0.41	
Early Hesperian	0.47	
Late Noachian	0.2	
Middle Noachian	0.04	
Early Noachian	?	
Total	1.82	

Adapted from Craddock & Greeley (2009)

Enough CI from volcanic outgassing?

Estimated (e.g. Craddock & Greeley, 2009, *Icarus*)

Volcanic outgassing (HCI) -

ightarrow Aerosols

Formation (e.g. Smith+, 2014, *Icarus*) Dry deposition on surface (ClO₄-?)
"Washed" into lakes

Phoenix WCL (Hecht +, 2009, *Science*)

Table 1

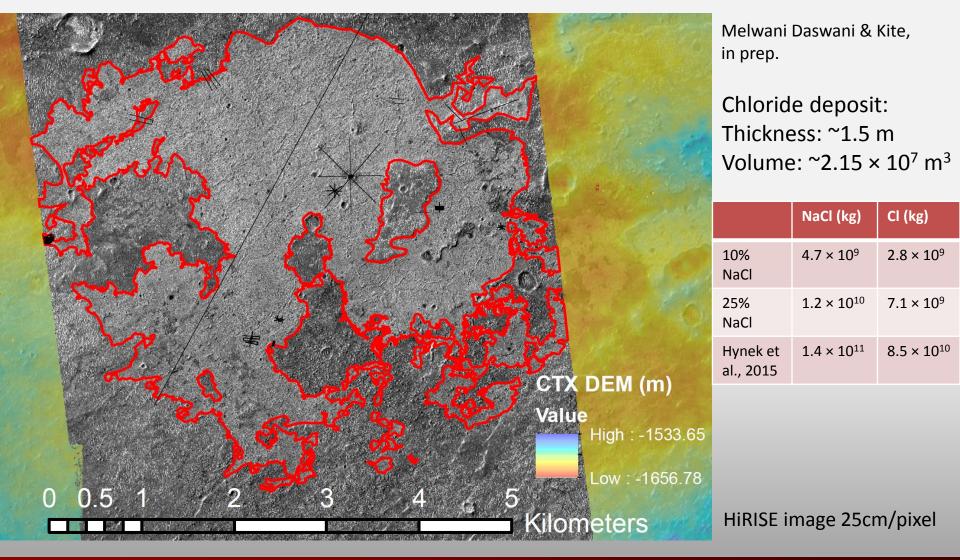
Extrusive volumes (10⁶ km³) of martian volcanic material with time^a.

Epoch	Extruded volume	Mass ^b (10 ²² g)
Late Amazonian	2.11	0.7
Middle Amazonian	8.49	2.8
Early Amazonian	15.76	5.2
Late Hesperian	15.63	5.16
Early Hesperian	17.65	5.82
Late Noachian	7.77	2.56
Middle Noachian	1.39	0.46
Early Noachian	?	?
Total	68.8	22.7

^a Data from Greeley and Schneid (1991).

^b Assumes a density of 3.3 g/cm³.

Table 3


Mass (1018 g) of martian volcanic gases released through time.

Epoch	Constituents
	HCI
Late Amazonian	0.06
Middle Amazonian	0.22
Early Amazonian	0.42
Late Hesperian	0.41
Early Hesperian	0.47≉ 3.3 kg m ⁻²
Late Noachian	0.2 globally
Middle Noachian	0.04 globally
Early Noachian	?
Total	1.82

Adapted from Craddock & Greeley (2009)

Detailed mapping to improve mass balance constraints

CI masses are somewhat different for other deposits

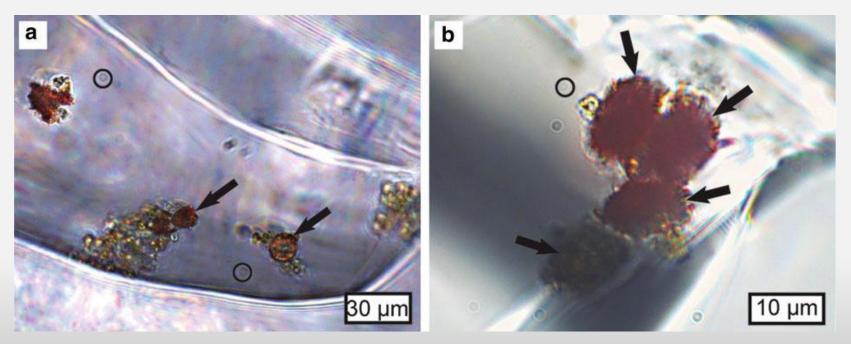
	Near Miyamoto Crater (this study)	Near Miyamoto Crater (Hynek et al. 2015)	Terra Sirenum (this study)	West of Knobel Crater (this study)
Mean deposit thickness (m)	1.5	4	2.6	8.0
Basin area (m ²)	8.4×10^{8}	1.2×10^{9}	3.5×10^{9}	3.5×10^{9}
Deposit volume (m ³)	2.2 × 10 ⁷	1.2 × 10 ⁸	5.8 × 10 ⁷	4.2×10^{6}
10 % NaCl mass (Cl kg/m²)	3.4	12.8	2.2	0.2
25 % NaCl mass (Cl kg/m ²)	8.5	32	5.5	0.4

Summary/conclusions

Origin of the Cl

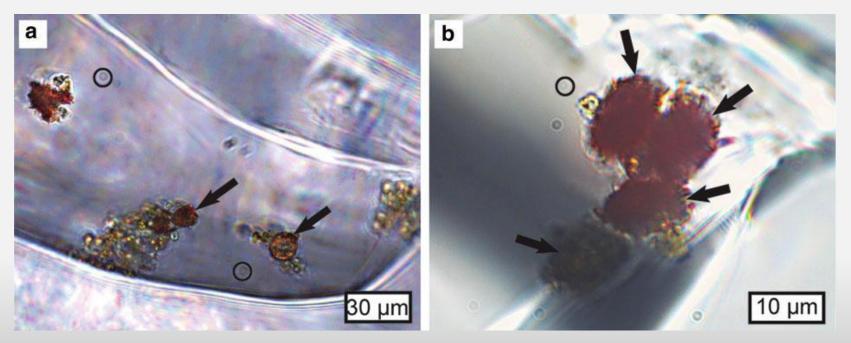
Near-subsurface basalt weathering

- + Can "hide" sulfates in subsurface+ Can make clay minerals prior to chlorides
- + Mass balance consistent
- Requires > 1 season of T above freezing


Volcanic Cl phases

+ Cl-phases detected on the surface, probably volcanogenic

- + Mass balance consistent
- + Does not require subsurface fluids
- + Consistent with inverted channels
- Sulfur is transported to lake

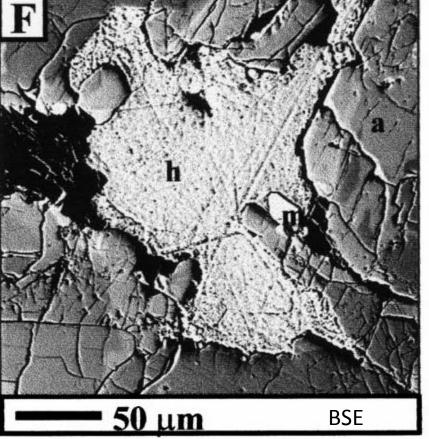

Fluid inclusions in chlorides can preserve DNA, microorganisms.

Photomicrographs of single-celled algae and prokaryotes in fluid inclusions in halite from Qaidam Basin (Wang et al. 2016, *Astrobiology*)

Fluid inclusions in chlorides can preserve DNA, microorganisms.

Photomicrographs of single-celled algae and prokaryotes in fluid inclusions in halite from Qaidam Basin (Wang et al. 2016, *Astrobiology*)

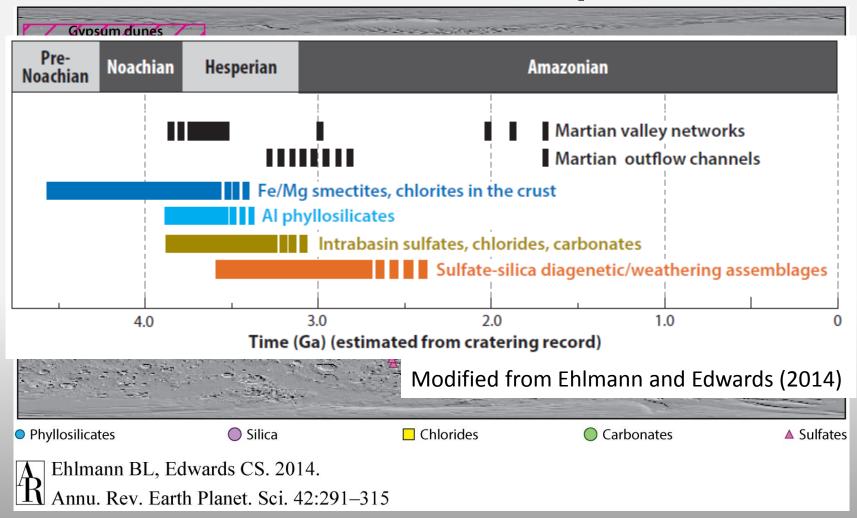
Possible shielding from GCR damage?


We have already sampled martian chlorides

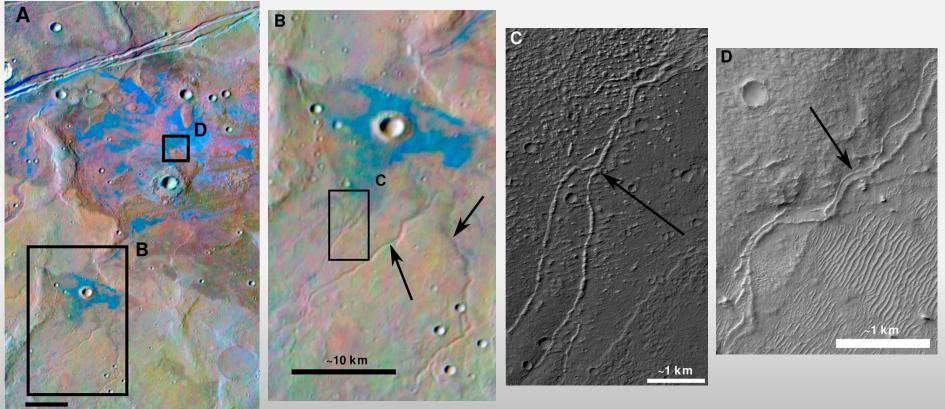
Nakhla

a = augite

h = halite

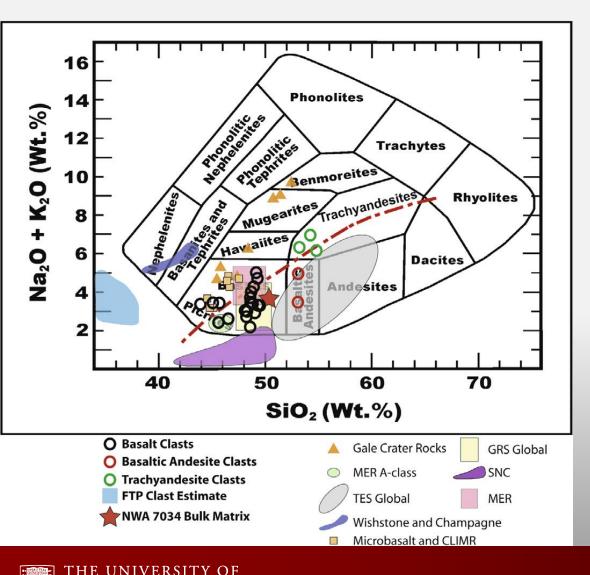

Group	Crystallization age	Secondary minerals
Nakhlites	~ 1.3 Ga	siderite gypsum anhydrite halite goethite smectite SiO ₂
Shergottites	165 – 475 Ma	gypsum halite phyllosilicates carbonates (ambiguous origin)

Bridges et al. (2001), Space Sci. Rev.; Bridges and Grady (2000), Earth Planet. Sci. Lett.



Chlorides are widespread

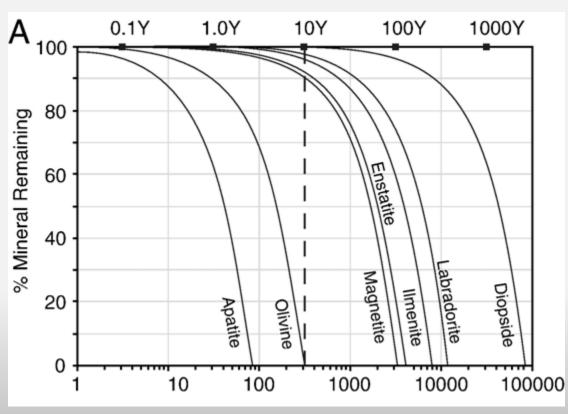
Chlorides are widespread



A & B: THEMIS radiance DCS (8/7/5) mosaics

C & D: HiRISE close-ups of inverted channels Osterloo et al. (2010) *J. Geophys. Res.*

Finding a representative basalt composition


NWA 7034 basalt clasts

Mineral	Mode Vol. %	Norm. wt. %
Plag.	50	45.8
K-felds	2	1.8
Low Ca pyx	20	24.1
High Ca pyx	10	12.1
Apatite	5	6.0
Magnetite	3	5.4
Ilmenite	1	4.6

Apatite contains ~ 4.6 wt. % Cl

Santos et al. (2015), *Geochim. Cosmochim. Acta* 157, 56 – 85.

Minerals weather at different rates

Water/Rock From Hurowitz and McLennan (2007), *Earth Planet. Sci. Lett., 260*, 432 – 443. Adjusted reactant rock composition for 90 wt. % apatite (Melwani Daswani & Kite, in prep.)

Mineral	Wt .%
Plagioclase	4.9
K-Felds	0.2
Low Ca pyx	2.6
High Ca pyx	1.3
Apatite	90.0
Magnetite	0.6
Ilmenite	0.5
Pyrite*	0.004*

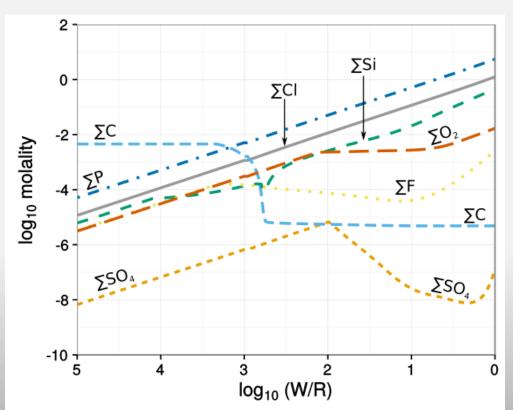
*Added and adjusted from Wittmann et al., 2015 *M&PS 50*, 326 – 352.

Quantifying H₂O and CI required

At W/R = 100

Melwani Daswani & Kite, in prep.

 $\Sigma CI = 1.15 \times 10^{-2} \text{ mol/kg H}_2O$


= 4.1×10^{-4} kg Cl/ kg H₂O

Assuming all Cl in solution precipitates as NaCl in the basin (~36 km³) we were looking at previously (0.12 km³ salt, 45 % porosity): 8.6 × 10¹⁰ kg Cl:

2.1 × 10¹⁴ kg H₂O required
= 2.1 × 10¹¹ m³ H₂O
≈ 5.9 times the volume of the basin

($\approx 172 \text{ m H}_2\text{O} \text{ across basin}$)

What was the time scale of the event?

We know the mass of the chloride deposit (~ 1.4×10^{11} kg) and the surface area of the basin (~ 1.2×10^9 m²) (Hynek et al., 2015)

Assumptions:

- Chlorides are NaCl
- Porosity of the deposit is 45 %
- Diffusivity (*K*) of the basin rock = 7×10^{-7} m² s⁻¹ (typical for silicates)

We calculate ~ 2.5×10^4 kg rock/m² (i.e. ~ 14.9 m depth) weathering

 $L = 2.32\sqrt{K \tau}$ $\tau \approx 6 \times 10^7 \text{ s} \approx 1 \text{ Mars year}$

C. Other sources?

Meteoritic? Cometary? Ancient reworked deposits?

