

Climate and Land Use Change Earth Resources Observation and Science (EROS) Center

The Future of Landsat Data Products: Analysis Ready Data and Essential Climate Variables

U.S. Department of the Interior U.S. Geological Survey

Steve Foga¹, Brian Davis¹, Brian Sauer², John Dwyer² ¹ SGT Inc., contractor to USGS EROS Center ² USGS EROS Center GSA 2016 – Denver, CO

Outline

- Status Quo
- Essential Climate Variables
- Data Improvements
 - Collections
 - Analysis Ready Data
- Use Cases

Status Quo

Landsat Overview

Four Decades of Earth Imaging

Status Quo Landsat Bandpasses

* MSS bands 1-4 were known as bands 4-7, respectively, on Landsats 1-3

<u>MSS</u> = Multispectral Scanner (Landsat 1-5); <u>TM</u> = Thematic Mapper (Landsat 4-5); <u>ETM+</u> = Enhanced Thematic Mapper Plus (Landsat 7); <u>OLI</u> = Operational Land Imager (Landsat 8); <u>TIRS</u> = Thermal Infrared Sensor (Landsat 8) **USGS**

Status Quo

Development of higher level data products

- Surface Reflectance (SR)
 - Future: land surface temperature
- EROS Science Processing Architecture (ESPA)
 - Higher level data products, data customization, statistics
 - On Demand Interface (ODI)
 - Application Programming Interface (API)
 - Order options
 - Vegetation/burn indices
 - Top of Atmosphere Reflectance, SR, cloud masks
 - Reprojection, spatial subset, pixel resizing, multiple formats

Reproject Products	
--------------------	--

- Modify Image Extents
- Pixel Resizing

Order interface layout in ESPA.

Status Quo

Data in a "scene"-based format

Covers ~180 km² of land

The extent of a single Landsat scene in relation to CONUS.

Essential Climate Variables

Pls across USGS

Physical parameters derived from SR

- Dynamic Surface Water Extent (DSWE; Jones, 2015 [1])
- Burned Area (BA; *Hawbaker et al., 2016* [2])
- Fractional Snow Covered Area (fSCA; Selkowitz, 2015 [3])

Burned Area (BA) classification map over burn scar in California. Product also comes as probability product.

Dynamic Surface Water Extent (DSWE) probability product shown over glacier lakes in North-central North Dakota.

Fractional Snow Covered Area probability product and related validation methodology. From *Selkowitz, 2015* [3].

Data Improvements

Landsat Collections

- Buckets known as data *tiers*
 - Consistent radiometry, threshold of scene-wide geometry
 - Tier 1 enables stackability
 - Best data can be easily accessed without additional metadata harvesting

Tier	Geometric RMSE	Radiometric	% OLI/TIRS	% ETM+	ТМ
1	≤ 12m	Static	60.42%*	74.98%	65.41%
2	> 12m	Static	39.58%	25.02%	34.59%

RT ** Recently acquired data with preliminary geometry and radiometry information. Will eventually become Tier 1 or Tier 2.

* Many OLI/TIRS scenes do not reach geometric threshold due to imaging of oceans, where ground control points (GCP) are often not sufficient.

Data Improvements

Analysis Ready Data (ARD)

- Derived from Collection data
- To support land use, land change and mapping sciences
- Data cube
 - Conterminous U.S. (CONUS), Alaska, Hawaii
 - Seamless analysis
 - immediate use of overlapping data
- Analysis
 - Application Programming Interface
 - API, on-the-fly analysis
 - "Receive answers, not data"

Representation of WRS-2 path/row overlap over CONUS.

Data Improvements

ARD Specifications

USGS Analysis Ready Dataset (ARD) Product Projection Parameters							
Projection: Albers Equal Area Conic							
Datum: North American Datum 1983 (NAD83)							
	Conterminous U.S.	Alaska	Hawaii				
First standard parallel	29.5°	55.0°	8.0°				
Second standard parallel	45.5°	65.0°	18.0°				
Longitude of central meridian	-96.0°	-154.0°	-157.0°				
Latitude of projection origin	23.0°	50.0°	3.0°				
False Easting	0.0	0.0	0.0				
False Northing	0.0	0.0	0.0				

Quick visualization

- Filter pixels by quality assurance (QA) bit(s)
 - Cloud, cloud shadow, snow/ice (below)
 - Saturation, dropped frames, terrain occlusion
- Best pixel by index and/or threshold
 - Series of tests to create probability map(s)
- Composite bands to accentuate features

Cloud masking product delivered with Landsat 8 surface reflectance data. Image was acquired over Yellowstone National Park, Wyoming.

Lithology, Hydrothermal Alteration maps

- Color composites of band ratios (right) to show areas of potential alteration
 - Goldfield mining district, NV, based upon work by Sabins, 1999 [4]
- Use of spectral unmixing (e.g., Principal Components Analysis (PCA)) to abstract distinct signatures using all bands

SR (pan-sharpened 4-3-2 composite) LC80410342016206LGN00

Band ratio composite using L8 surface refl. data detailing potential hydrothermal alteration (yellow/orange) in Nevada.

Sensor compatibility across time

- Red, Near Infrared (NIR), Shortwave Infrared (SWIR) 1, SWIR2 narrowed from TM/ETM+ to OLI
- Quick analysis at hydrothermally altered area near Drum Mountain, Utah
 - Sensors still detect same features, thus are cross-comparable

- Derive glacier velocities with feature tracking
 - Landsat 8 OLI ideal for this
 - High signal-to-noise ratio (SNR)
 - High enough to track snow drifts [5], not just crevasses
 - 15m panchromatic bands (sharper detail)
 - Repeat imaging opportunities
 - Converging fields of view with polar orbit
 - Ascending node imaging during midnight sun at poles
 - Seamless base image creation with ARD

Velocity profile of southern Alaska glaciers, derived from OLI images. Borrowed from *Fahnestock et al., 2015* [5].

Hazards

Quickly compile time series to show before/after

Composite with SWIR to reduce smoke (below)

Holuhraun lava flow in Iceland captured by Landsat 8. Left: SWIR,NIR,green composite. Center: red,green,blue composite. Right: thermal. Image modified from http://eros.usgs.gov/imagegallery/image-week-2#Iceland_images.

Before (left) and after (right) of landslide at Glacier Bay National Park and Preserve in Alaska captured by Landsat 8.

Resources

Landsat mission webpage: <u>http://landsat.usgs.gov</u>

Collections: <u>http://landsat.usgs.gov/landsatcollections.php</u>

Landsat data: <u>http://earthexplorer.usgs.gov/</u>

EROS Science Processing Architecture (ESPA): <u>https://espa.cr.usgs.gov/</u>

References

- [1] Jones, J. W. (2015). Efficient wetland surface water detection and monitoring via Landsat: Comparison with in situ data from the Everglades Depth Estimation Network. *Remote Sensing*, 7(9), 12503-12538.
- [2] Hawbaker, T., Vanderhoof, M., French, N., Billmire, M., Beal, Y. J. G., Takacs, J., ... & Caldwell, M. (2016, April). Automated mapping of burned areas in Landsat imagery; tracking spatial and temporal patterns of burned areas and greenhouse gas emissions in the Southern Rocky Mountains, USA. In *EGU General Assembly Conference Abstracts* (Vol. 18, p. 10709).
- [3] Selkowitz, D. (2015, December). The USGS Landsat Snow Covered Area Science Data Products. In 2015 AGU Fall Meeting. Agu. Image accessed 01 AUG 2016 from http://landsat.gsfc.nasa.gov/?p=11702.
- [4] Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14(3), 157-183.
- [5] Fahnestock, M., Scambos, T., Moon, T., Gardner, A., Haran, T., & Klinger, M. (2015). Rapid large-area mapping of ice flow using Landsat 8. *Remote Sensing of Environment*.

