Pre and Post-Monsoon Quality of Dissolved Organic Matter and Arsenic Mobilization Processes in Bengal Basin

Harshad Kulkarni^{1*}, Natalie Mladenov², Saugata Datta¹, Debashis Chatterjee³

¹Kansas State University, Manhattan, KS, USA.
²San Diego State University, San Diego, CA, USA.
³University of Kalyani, Nadia, West Bengal, India.

GSA Annual Meeting, Denver, CO 26th September, 2016

Outline

Dissolved organic matter (DOM) and Arsenic Mobilization

Design of study

► Results and Discussions

≻Conclusions

Arsenic Mobilization

Study Site

Sampling

Pre-Monsoon (PRM) Sampling : 29th May – 8th June, 2015 Post-Monsoon (PSTM) Sampling: 20th July – 13th August, 2015

Results: Cl⁻

- A natural tracer (conservative anion)
- PRM PSTM variations were observed only at shallow (< 40 m) depths.
- Suggests that variations in other parameters at greater depths may not be directly linked to the vertical mixing.

Results: Arsenic

 Well # 28, 29 have exceptionally high As at BL site.

 Well # 22, has exceptionally low As at SP site.

- Shallow depths ~ Holocene Gray Sediments
 ~ High As
- Greater depths ~ Pleistocene Orange Sediments ~ Low As

Results: SO₄²⁻

- High As ~ Low SO_4^{2-} / Low As ~ High SO_4^{2-}
- CD & SP sites are High As Low SO₄²⁻, consistent with dominant microbial Fe (III) reduction and As release.
- RN site is Low As High SO₄²⁻, consistent with lack of microbial Fe (III) reduction. Comparatively less reducing conditions.
- BL site is Low As Low SO₄²⁻, interestingly, two wells (28,29) at this site had exceptionally high As. May explain overall low SO₄²⁻ concentrations.

Results: DOC

- Wells at CD & SP sites have 1 ppm > DOC < 2.5 ppm, consistent with high As, low SO_4^{2-}
- Wells at RN & BL sites have DOC < 1 ppm, consistent with low As, high SO_4^{2-}
- PRM-PSTM DOC varied (mostly decreased) in both shallow and deep samples.

Results: TDN

• Wells at CD & SP sites have 1 ppm > TDN < 3 ppm, consistent with high As, high H:P, high DOC and $lowSO_4^{2-}$.

• Wells at RN and BL sites have TDN < 1 ppm, consistent with low As, low H:P, low DOC and high SO_4^{2-} .

Results: TDN

- $TDN = NO_3^{-} + NO_2^{-} + NH_4^{+} + DON$
- Considerable NO₂⁻ increased at CD and SP sites in PSTM samples, may indicate some nitrate/nitrite using bacteria activity due to mixing of oxygenated rainwater at shallow depths (?).
- Considerable increase in NO₂⁻ at RN (deep wells) site also occurred. RN and BL sites are comparatively less reducing than CD & SP sites. But this increase in PSTM NO₂⁻ at RN alone, may not be associated with mixing of oxygenated rainwater at such greater depths.
- (NH₄⁺ + DON) is strongly correlated with TDN, and hence also with As_T

Results: (DOC:TDN)

- High As ~ Low DOC:TDN during PRM. No correlation during PSTM.
- Wells at CD & SP sites have DOC:TDN < 1 (i.e. DOC < TDN) during both PRM and PSTM.
- Wells at RN & BL sites have DOC:TDN >1 (i.e. DOC > TDN) during PRM and DOC:TDN < 1 (i.e. DOC < TDN) during PSTM.

High AS ~ High abs254 •

PRM

PSTM

SD_D

- CD & SP sites had higher abs254 than RN & BL sites, consistent with higher • H:P ratio, higher DOC and higher dissolved iron (?) at CD & SP.
- Post-Monsoon changes: Significant, p = 0.002, t-test, n = 39. At all sites, ٠ PSTM abs254 intensity decreased. This decrease was correlated with decrease in arsenic in majority of samples.

R² and p values from linear ٠ regression of average values, n = 6. Trend line shows average trend.

*R2 and *p values from linear regression of all SITE PRM samples, n = 39

CD

SP

RN

ΒL

CD-P

SP-P

3.86

4.28

2.93

4.98

4.73

3.78

No correlation with As during PRM.

•

•

•

- Post-Monsoon changes: Significant, p < 0.001, t-test, n = 39.
- During PRM, all sites have SUVA in the similar range. PSTM SUVA of shallower samples seems to decrease significantly than that of deeper samples. Dilution at shallower depths.
- Decrease in SUVA consistent with decrease in DOC and abs254, but contrasting with seemingly increase in H:P ratio.

- R² and p values from linear regression of average values, n = 6. Trend line shows average trend.
- *R2 and *p values from linear regression of all samples, n = 39

- High As ~ Low FrI / Low As ~ High FrI
- CD & SP sites have lower FrI than RN & BL sites, consistent with Murshidabad study.
- Post-Monsoon changes: Not Significant, p = 0.279, t-test, n = 39

AVg. Fri		
SITE	PRM	PSTM
CD	0.75	0.77
SP	0.74	0.72
RN	1.00	1.00
BL	0.94	0.97
CD-P	0.82	0.88
SP-P	0.81	0.81

EEM spectra (left) and emission-excitation curve (right) showing loadings of three PARAFAC components identified in the model

C1*: Terrestrial Humic-like 240 (360) / 460

Ex. (nm)

- Arsenic increases with increase in C1*
- Post-Monsoon changes: <u>Not Significant</u>, p = 0.19, t-test, n = 39

- R² and p values from linear regression of average values, n = 6. Trend line shows average trend.
- *R2 and *p values from linear regression of all samples, n = 39

C2*: Humic-like, impacted by agriculture, wastewater activity 240 (320) / 400

- Arsenic increases with increase in C2*
- Post-Monsoon changes: <u>Significant</u>, p = 0.037, t-test, n = 39

High As ~ High Humic:Protein •

SP-P

- CD & SP sites have higher H:P than RN & BL sites, consistent with Murshidabad study. So, High As – High H:P – Low SO_4^{2-}
- PSTM changes: Not Significant, p = 0.292, t-test, n = 39. Increased in many shallow samples. The only deep well # 22 (140 m, SP site, exceptional low As) showed decrease in H:P ratio. All other deep wells at RN and BL sites, did not show such decrease in H:P.

- High Humic:Protein ~ Low SO₄²⁻ / Low Humic:Protein ~ High SO₄²⁻
- CD & SP sites are high Humic:Protein low SO₄²⁻, support humicmediated microbial Fe (III) reduction and As release.
- Wells at RN site have high SO₄²⁻ and low Humic:Protein, supporting presence of less humified DOM associated with lower microbial reductive dissolution and less As release.
- Wells at BL have low SO₄²⁻ and Humic:Protein, consistent with As- SO₄²⁻.
- PRM-PSTM Humic:Protein varied (mostly increased) at shallow depth, overall statistically not significant (p = 0.292, t-test, n = 39).

Summary

- Vertical mixing due to monsoonal recharge was limited to shallow depths (< 40m).
- Redox sensitive processes and DOM quality was affected even at greater depths.
- Shallow depths ~ High As ~ Low SO_4^{2-} ~ High DOC ~ High TDN ~ High abs254 ~ Low β : α ~ High Humic: Protein.
- At shallow depths, mixing effect, vertical movement exceeds lateral movement, less sedimentary DOC transported laterally.
- At greater depths, no mixing effect, irrigation pumping is stopped which slows down the lateral movement, less sedimentary DOC transported laterally.

Thank You

For Any Questions, Please Contact Harshad V. Kulkarni harshad.env@gmail.com