DUAL RECONSTRUCTION OF PALEOECOLOGY AND WHOLE-PLANT HABIT USING STABLE CARBON ISOTOPES FROM DISPERSED LEAVES OF *LAUROZAMITES POWELLII*, AN UPPER TRIASSIC BENNETTITALEAN.

K. C. FETTER^{1,2}, N. A. JUD^{2,3}, R. S. BARCLAY², A. R. BASHFORTH^{2,4}, C. FRANCE⁵, R. E. DUNN⁶, A. LINI⁷, S. WING².

- 1: Keller Lab, Department of Plant Biology, University of Vermont
- 2: Department of Paleobiology, National Museum of Natural History, Smithsonian Institution
- 3: Department of Plant Biology, Cornell University,
- 4: Geological Museum, Natural History Museum of Denmark, University of Copenhagen
- 5: Museum Conservation Institute, Smithsonian Institution.
- 6: Department of Paleobiology, The Field Museum.
- 7: Department of Geology, University of Vermont.

Natural History Museum of Denmark Geological Museum

Reconstructing Paleoenvironments

Hardwood Floodplain Forest

Carboniferous Swamp

Clarkia, ID, USA - P40

Stable Carbon Isotopes & Fractionation

Canopy Effect on Carbon Isotopes

Graham et al. (2014) Isotopic characteristics of canopies in simulated leaf assemblages. *Geochimica et Cosmochimica Acta.*

Conceptual Model for Mean & Standard Deviation

- Reconstruct the light environment of *Laurozamites powellii* using the carbon isotopic mean-standard deviation model.
- Apply the canopy effect to reconstruct the architecture of the plant.

Geologic Setting

Laurozamites powellii - Williamsoniaceae, Bennettitales (Fontaine) Weber & Zamudio-Varela

Carbon Isotopes: 64 leaves measured. 80% in triplicate.

Leaf physiognomy: leaf area. Data modeled for incomplete specimens (N = 12) using leaf area ~ pinna length² ($r^2 = 0.944$).

Undulation Index: 42 leaves measured from 617 cells.

Reconstructing the Light Environment

Tropical and temperate forest data from Graham et al. (2014) Isotopic characteristics of canopies in simulated leaf assemblages. *Geochimica et Cosmochimica Acta.*

Interpretation of Forest Type from Δ_{leaf}

Diefendorf et al. (2010). Global Patterns in Leaf ¹³C Discrimination and Implications for Studies of Past and Future Climate. *PNAS*

Plant Architecture Results

Plant Architecture Results

Interpretation of Plant Architecture Results

Divaricate Growth Habit

Model of Williamsoniid architecture.

Wielandiella angustifolia

Laurozamites powellii

Pott and McLoughlin. (2014). Divaricate Growth Habit in Williamsoniaceae (Bennettitales): Unravelling the Ecology of a Key Mesozoic Plant Group. *Palaeobiodiversity and Palaeoenvironments*.

Conclusions

- Laurozamites powellii grew in a homogeneous, high light environment.
- Xeric woodland or scrubland forest type is indicated by the mean(Δ_{leaf}) when compared to other forest types.
- Relationship of δ¹³C and leaf area suggest most leaves - regardless of size - experienced similar light environments, consistent with a divaricate growth form.

ACKNOWLEDGEMENTS

Collaborators

Nathan Jud, Rich Barclay Arden Bashforth

Christine France, Regan Dunn

Andrea Lini, Scott Wing

Special Thanks

PhD Advisor: Stephen Keller Dept. of Paleobiology, Kay Behrensmeyer, Matt Carrano, & Kirk Johnson, Deep Time Exhibit Team, Scott Whitaker (NMNH-LAB).

Natural History Museum of Denmark Geological Museum

