DUAL RECONSTRUCTION OF PALEOECOLOGY AND WHOLE-PLANT HABIT USING STABLE CARBON ISOTOPES FROM DISPERSED LEAVES OF LAUROZAMITES POWELLII, AN UPPER TRIASSIC BENNETTITALEAN.

K. C. FETTER¹,², N. A. JUD²,³, R. S. BARCLAY², A. R. BASHFORTH²,⁴, C. FRANCE⁵, R. E. DUNN⁶, A. LINI⁷, S. WING².

¹: Keller Lab, Department of Plant Biology, University of Vermont
²: Department of Paleobiology, National Museum of Natural History, Smithsonian Institution
³: Department of Plant Biology, Cornell University,
⁴: Geological Museum, Natural History Museum of Denmark, University of Copenhagen
⁵: Museum Conservation Institute, Smithsonian Institution.
⁶: Department of Paleobiology, The Field Museum.
⁷: Department of Geology, University of Vermont.
Reconstructing Paleoenvironments

Hardwood Floodplain Forest

Carboniferous Swamp

Di Michele et al. (2007)

Clarkia, ID, USA - P40
Stable Carbon Isotopes & Fractionation

Atmospheric CO₂

δ¹³C atm = -8.2‰

Fractionation 1: -4.4‰ δ¹³C cₗ = -12.6‰

Fractionation 2: -14.4‰ δ¹³C leaf = -27‰

Populus balsamifera stomate

Photosynthetic Activity

δ¹³C leaf‰ VPDB

-30 -25 -20 -15

RuBisCo

Calvin Cycle

ATP

ADP

12CO₂ 13CO₂ 12CO₂ 13CO₂ 12CO₂ 13CO₂ 12CO₂
Canopy Effect on Carbon Isotopes

Chen and Popadiouk (2002)
Objectives

• Reconstruct the light environment of *Laurozamites powellii* using the carbon isotopic mean-standard deviation model.

• Apply the canopy effect to reconstruct the architecture of the plant.
Geologic Setting

USNM 10061 - Upper Triassic, Upper Carnian (~ 230 mya)
Laurozamites powellii - Williamsoniaceae, Bennettitales (Fontaine) Weber & Zamudio-Varela
Methods

Carbon Isotopes: 64 leaves measured. 80% in triplicate.

Leaf physiognomy: leaf area. Data modeled for incomplete specimens (N = 12) using leaf area ~ pinna length^2 (r^2 = 0.944).

Undulation Index: 42 leaves measured from 617 cells.
Reconstructing the Light Environment

Tropical and temperate forest data from Graham et al. (2014) Isotopic characteristics of canopies in simulated leaf assemblages. *Geochimica et Cosmochimica Acta.*
Interpretation of Forest Type from Δ_{leaf}

Laurozamites

$\text{mean}(\Delta_{\text{leaf}}) = 18.7$

Diefendorf et al. (2010). Global Patterns in Leaf 13C Discrimination and Implications for Studies of Past and Future Climate. *PNAS*
Plant Architecture Results

\[\delta^{13}C \sim \text{Leaf Area} \]

-26.0
-25.5
-25.0
-24.5
-24.0

\[\delta^{13}C \text{ VPDB} \]

Leaf Area (cm\(^2\))
Plant Architecture Results

\[\delta^{13}C \sim UI \]

\[r^2 = 0.06^{\text{ns}} \]

N = 30
Undulation Index

\[\delta^{13}C \sim AR \]

\[r^2 = 0.04^{\text{ns}} \]

N = 30
Aspect Ratio

mean UI = 1.27 \rightarrow \text{LAI} = \sim 1

(Dunn et al. 2015)
Interpretation of Plant Architecture Results

Divaricate Growth Habit

Model of Williamsonioid architecture.
Wielandiella angustifolia
Laurozamites powellii

Conclusions

- *Laurozamites powellii* grew in a homogeneous, high light environment.

- Xeric woodland or scrubland forest type is indicated by the mean(Δ_{leaf}) when compared to other forest types.

- Relationship of $\delta^{13}\text{C}$ and leaf area suggest most leaves - regardless of size - experienced similar light environments, consistent with a divaricate growth form.
ACKNOWLEDGEMENTS

Collaborators

Nathan Jud, Rich Barclay Arden Bashforth
Christine France, Regan Dunn
Andrea Lini, Scott Wing

Special Thanks

PhD Advisor: Stephen Keller
Dept. of Paleobiology, Kay Behrensmeyer, Matt Carrano, & Kirk Johnson, Deep Time Exhibit Team, Scott Whitaker (NMNH-LAB).