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Structural Summary Structural Analysis Pictures of Study Area
A series of 109 structural data points were recorded in the eastern Unaweep Canyon study area. TR wre 2 iz g Tty “'f‘*'“‘

Measurements at locations (Figure 5) verified WNW-ESE striking, left-lateral oblique-slip faults

Figure 1. Regional map of central western Colorado Figure 2. Geologic map of the study area (USGS I-360-1) overlaid onto study area region using ArcGIS.

Structures of the Northern Uncompahgre Plateau
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Figure 3. Structural map of the northern Uncompahgre Plateau, CO. Provided by Livaccari et al., 2016.

Introduction

The Uncompahgre Plateau (Figure 1) 1s a NWSE striking asymmetrical anticlinal Laramide uplift bounded on the

west by the Uncompahgre fault, a reactivated Permian/Pennsylvanian reverse fault originating in the Ancestral

Rocky Mountain orogenic period (Baars, 1981). The eastern boundary (Figure 3) consists of multiple WNW-ESE
striking, left-lateral oblique-slip faults which splay into transpressive bends along multiple NW-SE striking monoclines
and reverse faults (Livaccari et al., 2016). Stratigraphically the area has a significant angular unconformity between the
Triassic, Jurassic and Cretaceous sediments and the underlying Precambrian 1igneous intrusive bodies and metamorphic
facies. The sediments overlying the angular unconformity begin with the Triassic Chinle Formation and continue
upsection through the lower Cretaceous Burro Canyon and Dakota Formations (Figure 2). Classification of the Mesozoic,
Paleozoic, and Precambrian facies 1s thoroughly addressed by J.E Case (1991), as 1s much of the structural mapping of
the northwestern portion of the Uncompahgre Plateau. Laramide orogenic stresses provided the impetus for the
reactivation of the Permian/Pennsylvanian fractures, introducing plastic deformation of Jurassic sediments as evidenced
by the Cactus Park and Redlands reverse fault, and were responsible for the brittle deformation of Jurassic sediments
along the eastern portion of the Uncompahgre uplift (Livicarri, 2007). Finally, Laramide tectonic extensional stresses
acting upon the transpressional faulted central northern Uncompaghre Plateau, formed the Unaweep Canyon Fault as a
series of down-to-the SE normal fault structures (Figure 4), supporting the previous hypothesis of the modern canyon
forming due to incision in the late Cenozoic by the ancestral Gunnison and/or Colorado (Hood et al., 2014).

Figure 6. Structural pictures of study area above, slickenlines on

NE-SW compressional strain. bottom, with location numbers in gold stars corresponding to Figure 5.
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Figure 4. Structural map and cross-sections of the Unaweep Fault in eastern Unaweep Canyon,
northern Uncompahgre Plateau, CO.
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Figure 7. Brecciation samples and outcrops on the Uncompahgre Plateau, with corresonding numbered gold stars to map locations on Figure 5 (left).
Schematic illustration (right) with different mechanisms of brecciation in hydrothermal systems and geometric representation (Jebrak, 1997).

Conclusion

Unaweep Canyon originated as a Laramide-age pull-apart basin between the controlling left-lateral strike-slip
faults found in Cactus Park, Nancy Hanks Gulch, Taylor Gulch, Rocky Pitch Gulch, and North Gill Creek. The
Unaweep Canyon Fault has a displacement of 140 ft. just east of Rocky Pitch Gulch. Prior to this study, there
were two major hypotheses for the formation of Unaweep Canyon; Cenozoic incision by the ancestral Gunnison
and/or Colorado rivers (Hood et al., 2014), or Permian-age glaciation creating a sediment filled glacial valley
exhumed by ancestral river flow (Soreghan et al., 2007). We find the latter to be implausible due to the structural
and geochemical data collected. The correlation of cross-canyon faulting extending into the Jurassic sedimentary
layers, and the evidences of normal fault kinematics within the eastern Unaweep Canyon proper, restrict the
timeframe of the Unaweep Canyon Fault formation to the Mesozoic or Cenozoic period. Radiometric dating
would constrain this timframe. Also using Pinon Mesa elemental concentration data as a control group for north
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Preliminary Geochemical Summary

Multiple samples were gathered from seven mineralized zones along fractures
in Unaweep Canyon and Pinon Mesa (Fig. 5). The samples were crushed and
micro-milled. A whole rock lithogeochemistry analysis was performed using
ICP-OES and ICP-MS at ACTLabs, Canada. Elemental analysis data was
graphed per element as concentration in ppm (Diagram 3). Of interest was the
correlation between elemental signatures related to the elevation and location
of the sample sites. Upper Nancy Hanks mine samples retained the same
clemental peaks 1in both the north and south side samples. Though different than
the peaks from upper mine samples, the lower Nancy Hanks mine samples also
retained peak correlation in both north and south side samples. Pinon Mesa
lower and upper samples correlated with lower Nancy Hanks mines. High
levels of As, Pb, Mo, and Zn, were used to reference a proper hydrothermal
model (Diagram 2), (Fisher et al.,1986). Cu and Sr were anomalously high on
Pinon Mesa reflecting the influx of Tertiary intrusive fed hydrothermal
mineralization. REE data returned was then chondrite normalized and plotted
(McDonough, 1995). The graphed data points indicate the minerals were
derived from an intermediate source rock (Diagram 4). Because samples were
taken from vein material they reflect the chemical constituents of the source
rock. The Precambrian igneous basment in the area of the samples is primarily
intermediate composition, and therefore could be the source of this data.
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and south Nancy Hanks elemental concentration data some differentiation of geochemical signatures on either side Ack led ¢
should be evident due to influx of sedimentary material from 1nfill. In addition, due to the difference in mechanical cknowleagements

competency between Triassic infill and Precambrian crystalline rock, some form of deviation to the strike of the
cross canyon faulting would be expected. Based on the structural data, the series of Laramide NE-SW striking

normal faults between the controlling WSW-ESE striking left-lateral oblique-slip faults collectively created zones

of weakness capitalized by Cenozoic river incision, leading to the formation of the modern Unaweep Canyon.

Special thanks to: Colorado Mesa University Geology Faculty Members for guidance, advice, and sharing information
throughout this project: Dr. Rex Cole, Dr. Andres Aslan, and Dr. William Hood.

Colorado Mesa University Department of Physical and Environmental Sciences
Grand Junction Geological Society for the grants that allowed for the chemical analysis of samples.

Paul Ashcraft, Dal Aubert, Della Long, Dennis Carns, Kenyon and Mary Fields, Mel Bersch, The Massey Family.



