Synextensional magmatism controlling the localization of epithermal mineralization in the Guazapares Mining District, northern Sierra Madre Occidental, Mexico

> Bryan P. Murray & Cathy J. Busby GSA Annual Meeting 2016

Sierra Madre Occidental (SMO)

- Biggest Tertiary silicic large igneous province
- Extends over 1,200 km from U.S.-Mexico border
- Covers 300,000–400,000 km², average thickness I km
- Unextended core surrounded by the Miocene-age extensional belts
- Erupted during the mid-Cenozoic ignimbrite flare-up of the western North America Cordillera

(after Henry and Aranda-Gomez, 2000; Ferrari et al., 2002, Bryan et al., 2013)

Regional stratigraphy

(Ferrari et al., 2007)

Subdivision of SMO volcanic rocks: (after McDowell & Keizer, 1977)

- I) Lower Volcanic Complex (LVC)
 - Late Cretaceous to Eocene
 - Andesitic arc magmatism
- 2) Upper Volcanic Supergroup (UVS)
 - Eocene to Early Miocene
 - Silicic ignimbrite flare-up
 - Two main ignimbrite pulses:
 - Early Oligocene (32 28 Ma)
 - Early Miocene (24 20 Ma)
- 3) Southern Cordillera basaltic andesite province (SCORBA)
 - Mostly Oligocene-age (33-17.6 Ma)
 - Erupted during the final stages and after each ignimbrite pulse

Guazapares Mining District

- Western edge of the "unextended" northern SMO in Copper Canyon region, within Sierra Madre Gold/Silver Belt (~250 km SW of Chihuahua)
- Detailed local economic geology studies by Paramount Gold, etc.
- Regional 1:50k geologic mapping by Mexican government (2004)
 - Lacks structural detail or age controls
 - Mapped as LVC Paleocene-Eocene andesites and UVS Oligocene rhyolite tuffs

Guazapares Mining District

Recent geologic mapping, zircon U-Pb LA ICP-MS dating, modal analyses, and whole-rock geochemistry (Murray et al., 2013 Geosphere):

- Two UVS silicic volcanic formations, separated by a maficintermediate volcanic & sedimentary formation
 - Early Oligocene ignimbrite pulse (Parajes formation)
 - SCORBA (Témoris formation)
 - Early Miocene ignimbrite pulse(?) (Sierra Guazapares formation)
- Previously unmapped Late Oligocene half-graben basins bound by NW-trending syndepositional normal faults, extension preceding locally-derived mafic-intermediate and silicic volcanism
- Direct relationship is inferred between the timing of silicic intrusions, extensional structures, and localization of epithermal mineralization

(Murray et al., 2013)

Stratigraphy

Three synextensional UVS "formations" in the Guazapares Mining District:

I) Parajes formation:

- ca. 27.5 Ma
- Silicic outflow ignimbrite sheets
- 2) Témoris formation:
 - ca. 27.5 24.5 Ma
 - Mafic-intermediate volcanic rocks
 - Alluvial deposits
- 3) Sierra Guazapares formation
 - ca. 24.5 23 Ma
 - Silicic fissure eruptive centers

Sierra Guazapares formation: vent facies: rhyolite lavas and plugs, rhyolitic cross-bedded ignimbrites, co-ignimbrite lag breccias, dome collapse breccia

Témoris formation: middle section: andesite lavas (plagioclase+pyroxene), conglomerates, breccias, & sandstones

Témoris formation: lower section; amygdaloidal basalt to andesite lavas and autoclastic flow breccias (plagioclase+pyroxene±olivine), mafic-andesitic hypabyssal intrusions, conglomerates, breccias, & sandstones

Sierra Guazapares formation: proximal facies: welded to nonwelded massive & bedded rhyolite ignimbrites with local fluvial reworking

Témoris formation: upper section: distal rhyolite ignimbrites, reworked tuff to lapilli-tuff, conglomerates, breccias, & sandstones

Parajes formation: welded to nonwelded outflow ignimbrite sheets, reworked tuff, sandstones & conglomerates

(Murray et al., 2013)

Témoris formation (ca. 27.5 – 24.5 Ma)

Sierra Guazapares formation

Upper section: distal rhyolite ignimbrites, reworked tuff to lapilli-tuff; conglomerates, breccias, & sandstones_~24.5_Ma

Middle section: andesite lavas; conglomerates, breccias, & sandstone

Lower section:

amygdaloidal basalt to andesite lavas and autoclastic flow breccias, mafic-andesitic hypabyssal intrusions; conglomerates, breccias, & sandstones 27.3 ± 0.3 Ma

Basal deposits: debris flow w/ Parajes fm. clasts; distal silicic tuff Parajes formation

Host most epithermal deposits

Sierra Guazapares formation (ca. 24.5 – 23 Ma)

Silicic fissure magmatism:

- Vent facies: rhyolite lavas and plugs, rhyolitic cross-bedded ignimbrites, co-ignimbrite lag breccias
- Proximal facies: welded to nonwelded massive & bedded rhyolite ignimbrites with local fluvial reworking

Sierra Guazapares formation fissure volcanism

Pre-existing normal faults controlled the location of Sierra Guazapares formation fissure volcanism

- Cross-bedded ignimbrites found in ~3 km-wide belt around La Palmera fault, laterally transition away to massive & bedded ignimbrites
- Rhyolite plugs and lava flows also restricted to La Palmera fault & other faults in region

NW SE BM100305-BM1003 Ttba 10 ruz A Ttda Ttba st Tt Sierra Guazapares formation plug/lava

flow (Tsi/Tsl) along La Palmera fault

Implications for epithermal mineralization

Localization of epithermal mineralization favored where pre-existing extensional structures are spatially associated with Sierra Guazapares formation rhyolite plugs

 low-to-intermediate-sulfidation, gold-silver-lead-zinc vein and breccia deposits

Normal faults and accommodation zones provide conduits for intrusionrelated hydrothermal fluids and localize epithermal mineralization

Resource areas of Guazapares Fault Zone

Monte Cristo

San Antonio

Cerro Salitrera rhyolite plug

La Union

San Antonio resource area

- Two en echelon NW-trending normal faults with opposing dip-directions
- Mineralization along subvertical structures in antithetic accommodation zone between faults
- Silicic intrusions crop out ~0.5 1 km east, ~120 m-depth below resource

Development of the Sangre de Cristo half-graben basin

F

С

Bedded lapilli-tuff (Tsvb) Silicic lava flow/intrusion (Tsl) Massive lapilli-tuff (Tsvm) Dome collapse breccia (Tsvdb, Tsvdl) Lacustrine sedimentary rock (Tsvl) High-silica rhyolite intrusion (Tsiw) Basalt to andesite lava (Ttba) Inferred zone of mineralization

(Murray et al., 2015, JSAES)

SW

La Union resource area

- Mineralization is concentrated along a synthetic normal fault accommodation zone.
- Adjacent to the La Unión resource area (<1 km E) is Cerro Salitrera, one of the largest rhyolite plugs in the area.

Conclusions

- Three Late Oligocene-Early Miocene synextensional UVS formations are identified in Guazapares Mining District, younger than the previously inferred Eocene LVC age
- Majority of resource areas in district are found along "main Guazapares structure", adjacent to trend of Sierra Guazapares formation rhyolite plugs
- Mineralization in San Antonio and La Union resource areas concentrated in accommodation zones between normal faults
- Monte Cristo resource area consists of synvolcanic half-graben basin. Mineralization concentrated in footwall subvolcanic intrusions and fault-adjacent basin fill
- Mineralization likely related to emplacement of Sierra Guazapares formation rhyolite intrusions; normal faults and accommodation zones provide conduits for intrusion-related hydrothermal fluids and localize precious metal mineralization.

Acknowledgements

Funding provided by:

Paramount Gold & Silver, National Science Foundation, UC Mexus, Geological Society of America, UCSB, UNAM

Gracias:

Larry Segerstrom, Danny Sims, Dana Durgin, Xavier Martinez, Armando Valtierra, Denis Norton, Luca Ferrari, Luigi Solari, Elena Centeno-Garcia, Carlos Ortega-Obregón, Rufino Lozano Santa Cruz, Graham Andrews, Scott Bryan

Field assistants:

Dana Murray, Jordan Lewis, Adrienne Kentner, Angeles Verde-Ramírez

