GSA Annual Meeting in Denver, Colorado, USA - 2016

Paper No. 53-6
Presentation Time: 2:50 PM


ECKERT, Andreas, Geosciences and Geological and Petroelum Engineering, Missouri S&T, Rolla, MO 65409, DAMASCENO, Davi R., Department of Geosciences and Geological and Petroleum, Missouri University of Science and Technology, Rolla, MO 65401 and LIU, Xiaolong, Petroleum Engineering, Missouri University of Science and Technology, 1400 N Bishop Ave, Rolla, MO 65409,

Flexural-slip is as an important mechanism during folding and a general conceptual and qualitative understanding has been provided by various field studies. However, quantitative evidence of the importance of the flexural-slip mechanism during fold evolution is sparse due to the lack of suitable strain markers. In this study, 2D finite element analysis is used to overcome these disadvantages and to simulate flexural-slip during visco-elastic buckle folding. Variations of single and multilayer layer fold configurations are investigated, showing that flexural-slip is most likely to occur in effective single layer buckle folds, where slip occurs between contacts of competent units. Based on the effective single layer buckle folds, the influence of the number of slip surfaces, the degree of mechanical coupling (based on friction coefficient), and bedding unit thickness, on the resulting slip distribution are investigated. The results are in agreement with the conceptual flexural-slip model and show that slip is initiated sequentially during the deformation history and is maximum in the center of the fold limb. The cumulative amount of slip increases as the number of bedding contacts is increased. For a lower degree of mechanical coupling increased slip results in different fold shapes, such as box folds, during buckling. In comparison with laboratory experiments, geometrical relationships and field observations, the numerical modeling results show similar slip magnitudes. It is concluded that flexural-slip should represent a significant contribution during buckle folding, affecting the resulting fold shape for increased amounts of slip.