GSA Annual Meeting in Denver, Colorado, USA - 2016

Paper No. 136-1
Presentation Time: 1:35 PM


POST, Jeffrey E.1, GAILLOU, Eloïse2, BUTLER, James E.1 and BYRNE, Keal S.1, (1)Dept. of Mineral Sciences, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, (2)Musee de mineralogie, Mines ParisTech, 60, Bd St. Michel, Paris, 75006, France,

The Smithsonian’s National Gem Collection includes the Hope Diamond and an assortment of other significant fancy-colored diamonds, providing a unique opportunity to conduct detailed and sustained studies on an unprecedented selection of these rare and valuable stones. We present an overview and recent results from our work on pink, blue and chameleon diamonds.

 Boron causes the blue color of the Hope Diamond and other type IIb diamonds, but scarcity, high value, and the low concentration of B has inhibited B analyses of natural IIb diamonds. We used FTIR and ToF-SIMS to measure concentrations and distributions of B in the Hope and other blue diamonds. ToF-SIMS analyses gave spot B concentrations as high as 8.4 ± 1.1 ppm for the Hope Diamond to less than 0.08 ppm in other blue diamonds and revealed strong zoning of B in some diamonds, which was confirmed by mapping using synchrotron FTIR. Boron is also responsible for the phosphorescence emissions of IIb diamonds, at 660 nm and 500 nm; the emissions are likely caused by donor-acceptor pair recombination processes involving B and other defects.

 Approximately 50 type I natural pink diamonds were compared using UV-Vis, FTIR, and CL spectroscopies. All stones exhibit pink color zoning, ~1µm thick [111] lamellae, in otherwise colorless diamond. The pink diamonds fall into two groups: 1) those from Argyle in Australia and Santa Elena in Venezuela, and 2) those from other localities. TEM imaging from FIB sections revealed that twinning is the likely mechanism by which plastic deformation is accommodated for the pink diamonds. The deformation creates new centers, including the one responsible for the pink color, which remains unidentified. The differences in the plastic deformation features for the two groups might correlate to the particular geologic conditions under which the diamonds formed.

 Fluorescence and thermoluminescence experiments on natural chameleon diamonds reveal that an emission band, peaking near 556nm, may be stimulated via a number of different mechanisms. We discuss the implications of our observations for the electronic structure of the 556nm-fluorescing defect center, and the connections to the unidentified color center responsible for chameleon color changes.