A MULTI-TRACER APPROACH COUPLED TO NUMERICAL MODELS TO IMPROVE UNDERSTANDING OF MOUNTAIN BLOCK PROCESSES IN A HIGH ELEVATION, SEMI-HUMID CATCHMENT
We are using: (a) combination of geochemical composition, along with 2H/18O and 3H isotopes to improve an existing conceptual model for mountain block recharge (MBR) for the Marshall Gulch Catchment (MGC) located within the Santa Catalina Mountains. The current model only focuses on shallow flow paths through the upper unconfined aquifer with no representation of the catchment’s fractured-bedrock aquifer. Groundwater flow, solute transport, and groundwater age will be modeled throughout MGC using COMSOL Multiphysics® software. Competing models in terms of spatial distribution of required hydrologic parameters, e.g. hydraulic conductivity and porosity, will be proposed and these models will be used to design discriminatory data collection efforts based on multi-tracer methods.
Initial end-member mixing results indicate that baseflow in MGC, if considered the same as the streamflow during the dry periods, is not represented by the chemistry of deep groundwater in the mountain system. In the ternary mixing space, most of the samples plot outside the mixing curve. Therefore, to further constrain the contributions of water from various reservoirs we are collecting stable water isotopes, tritium, and solute chemistry of precipitation, shallow groundwater, local spring water, MGC streamflow, and at a drainage location much lower than MGC outlet to better define and characterize each end-member of the ternary mixing model. Consequently, the end-member mixing results are expected to facilitate us in better understanding the MBR processes in and beyond MGC.