CHARACTERIZATION OF SUB-MICRON SUSPENDED LOAD IN A SHALLOW AQUIFER: CORRELATION TO URBAN LAND USE
Suspended particle concentrations and size distributions were determined using spectrophotometric techniques, dynamic imaging particle analysis, and adapted Navier-Stokes settling calculations. Suspended load chemistry was evaluated by SEM-EDS and PXRD analysis and was utilized as a first approximation to distinguish naturally-occurring material from anthropogenically-derived particles.
Preliminary results show the total suspended load concentrations (SLC) range from ~ 140 to 4900 ppm. The highest SLC concentration was observed in the groundwater (GW) beneath a residential lawn. GW under streets, sidewalks and surge basins had intermediate SLC values (1500-2550 ppm), and GW associated with a former industrial site and parking lot had consistently lower SLC (280-1030 ppm). Composition analysis of the ≤ 0.76 µm fractions from different locations indicated that silicates of quartz, feldspar and clay are common natural suspended matter throughout the aquifer. The most conspicuous anthropogenic material is graphite/graphitized carbon black, distinguishing the street, sidewalk and surge-basin sites from other land uses. Results suggest that current land-use practices may have greater influence on GW SLC, while historical activities more heavily influence particulate chemistry.