GSA Annual Meeting in Denver, Colorado, USA - 2016

Paper No. 176-15
Presentation Time: 9:00 AM-6:30 PM

GEOCHEMICAL CONSTRAINTS ON THE MAGMATIC SYSTEM AND ERUPTIVE ENVIRONMENT OF A GLACIOVOLCANIC TINDAR RIDGE FROM UNDIRHLíðAR, SW ICELAND


WALLACE, Chloe1, KUMPF, Benjamin1, HEINEMAN, Rachel2, LEMBO, Cara3, ORDEN, Michelle4, THOMPSON, Anna C.5, ENGEN, Carl-Lars6, KOCHTITZKY, William4, POLLOCK, Meagen1, EDWARDS, Ben4 and HIATT, Alex1, (1)Department of Geology, The College of Wooster, 944 College Mall, Wooster, OH 44691, (2)Department of Geology, Oberlin College, 52 West Lorain St, Oberlin, OH 44074, (3)Department of Geology, Amherst College, 11 Barrett Hill Drive, Amherst, MA 01002, (4)Department of Earth Sciences, Dickinson College, 28 N. College Street, Carlisle, PA 17013, (5)Department of Geology, Carleton College, One North College Street, Northfield, MN 55057, (6)Department of Geology, Beloit College, 700 College Street, Box 777, Beloit, WI 53511, cwallace17@wooster.edu

Glaciovolcanic tindar ridges are landforms created by the eruption of magma through fissure swarms into ice. The cores of many of these ridges comprise basaltic pillow lava, so they serve an accessible analogue for effusive mid-oceanic ridge volcanism. Furthermore, similar landforms have been identified on Mars, and thus they may also serve as models for planetary volcanic eruptions. To better understand pillow formation and effusive glaciovolcanic eruptions, we are investigating Undirhlíðar ridge, a pillow-dominated tindar on the Reykjanes Peninsula in southwest Iceland. Our detailed mapping and sampling in two rock quarries along the ridge and in the ~3 km area between the quarries show that this specific tindar ridge has had a complex eruption history. In the northern quarry (Undirhlíðar), Pollock et al. (2014) demonstrated that at least two geochemically distinct magma batches have erupted. Further trace element and isotope analyses in the southern quarry (Vatnsskarð) suggest that the ridge is fed by a heterogeneous mantle source. Isotopic Pb data show a spatially systematic linear array, which is consistent with a heterogeneous mantle mixing between depleted and enriched endmembers. The occurrence of multiple magma batches in dikes and irregular intrusions suggests that these structures are important to transporting magma within the volcanic edifice. Glassy pillow rinds were sampled for volatile analysis by FTIR in order to determine how paleo-water pressures vary along the ridge. In Undirhlíðar quarry, paleo-water pressures decrease with stratigraphic height (1.6-0.7 MPa). In Vatnsskarð quarry, paleo-water pressures show evidence of two separate eruptions, where pressure values decrease with an increase in stratigraphic height from 1.1 to 0.7 MPa over ~30 m, at which point pressure resets to 1.1 MPa and continues to decrease with elevation. When comparing the two quarries, paleo-water pressures in the upper units of Undirhlíðar and all the units in Vatnsskarð have similar values (0.7-1.1 MPa), and these are lower than the basal units of Undirhlíðar (1.2-1.6 MPa). Overall, compositional variations correlate with stratigraphy and spatial distribution along axis, suggesting that glaciovolcanic eruptions and their resulting landforms show a higher level of complexity than previously thought.