

Evidence of the K-Pg Impact in California

Lawrence L. Busch and Russell V. Miller

Empirical evidence and modeling indicate that the following events occurred as a result of the K-Pg impact at Chicxulub, Mexico: Impact blast, ejecta fallout, tsunami sequences, acidic aerosol generation and rain-out. We theorize that evidence of these events is preserved in the sedimentary record in California.

Paired clay-rich “melt ejecta” and Iridium-rich “fireball” layers occur globally (Pollastro and Bohor, 1993; Evans and others, 1994; Smit, 1999; Croskell and Collins, 2002). Impact-tsunami deposits are documented in the Gulf of Mexico (Yancey, 1997; Bralower and others, 1998). Elsewhere, tsunamis would likely be generated by seismically induced submarine landslides along the Atlantic and Pacific coasts (Norris and others, 2000; Busby and others, 2002), and possibly by antipodal geoid displacement (southeast Asia).

Researchers have quantified a volumetric-range for acidic aerosols generated by the K-Pg impact into Yucatan’s anhydrite target rocks (D’Hondt and others, 1994; Guangqing and others, 1994; Lyons and Aherns, 2002; Kring, 2007). The estimated volume of acid is deemed sufficient to have produced, via enhanced weathering, the “spike” in sea-water strontium isotope values across the K-Pg boundary (Martin and Macdougall, 1991; MacLeod and others, 2001; Kring, 2007). These acidic solutions would likely reside in basins and lagoons until neutralized.

In California (and elsewhere), Paleocene rocks are characterized by kaolinite. Examples include: the Paleocene Simi Conglomerate, Silverado (Sutherland, 1935; Engel, 1959; Engel and others, 1959; Schoellhamer and others, 1981), and Goler (Dibblee, 1952; Cox, 1982; Cox, 1987) Formations; and basal units of the “Eocene” Lone (Allen, 1929; Creely and Force, 2007), Walker (Bartow and McDougall, 1984), and Maniobra (Crowell and Suzuki, 1959; Squires and Advocate, 1986; Ingersoll and others, 2014) Formations. Features common to these formations include laterization, pisolithic claystone, kaolinitized sediment and basement (saprolite), and lignite.

The classical interpretation is that these lateritic “paleosols” result from an extended period of weathering in a warm, humid environment (Peterson and Abbott, 1973; Peterson and Abbott, 1975; Abbott and others, 1976; Retallack, 1981; Abbott and others, 1993; Kraus, 1999). However, the laterite-bearing Silverado Formation and Simi Conglomerate are bracketed between Danian and Maastrichtian marine strata (Saul, 1983; Miller and Busch, 2016), which suggests a period of lowered sea level — and a cooler, drier climate.

We propose a model in which the observed intensive corrosion and kaolinitization of sediment and basement resulted when impact-generated acidic solutions collected in and saturated sediment-filled fluvial channels, basins, and lagoonal environments.

In this model, economic clay deposits in the Alberhill area (Sutherland, 1935; Engel, 1959; Engel and others, 1959) represent sediment and basement variably altered by ponded acidic run-off. The Claymont Clay Bed, which consists exclusively of kaolinite and angular sub-mm

quartz (Schoellhamer and others, 1981), may represent a deposit from a down-range ray of the clay-rich K-Pg impact “ejecta layer.”

References:

Abbott, P.L., Hanson, A.D., Thomson, C.N., Logue, D.L., Bradshaw, K.D., Pollard, W.J., Seeliger, T.E., 1993, Geology of the Paleocene Sepultura Formation, Mesa de la Sepultura, Baja California: Ciencias Marinas, v. 19, No. 1, p. 75-93.

Abbott, P.L., Minch, J.A., and Peterson, G.L., 1976, Pre-Eocene paleosol south of Tijuana, Baja California, Mexico: Journal of Sedimentary Petrology, v. 46, p. 355-361.

Allen, Victor T., 1929, The Ione Formation of California: Bulletin of the Department of Geological Sciences [University of California], v. 18, no. 14, p. 347-448.

Bartow, A.J., and McDougall, K., 1984, Tertiary stratigraphy of the southeastern San Joaquin Valley, California: USGS Bulletin 1529-J, 44p.

Bourgeois, J., Hansen, T.A., Wiberg, P.L., and Kauffman, E.G., 1988, A tsunami deposit at the Cretaceous-Tertiary boundary in Texas: Science, v. 241, p. 567-580.

Bralower, T.J., Paull, C.M., and Leckie, R.M., 1998, The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows: Geology, v. 26, p. 331-334.

Busby, C.J., Yip, G., Blikra, L., Renne, P., 2002, Coastal landsliding and catastrophic sedimentation triggered by Cretaceous-Tertiary bolide impact: a Pacific margin example?: Geology v. 30, no. 8, p. 867-890.

Cox, Brett F., 1982, Stratigraphy, sedimentology, and structure of the Goler Formation, El Paso Mountains, California: implications for Paleogene Tectonism on the Garlock Fault Zone: Dissertation, University of California, Riverside, 266 p., 2 plates.

Cox, Brett F., 1987, Stratigraphy, depositional environments, and paleotectonics of the Paleocene and Eocene Goler Formation, El Paso Mountains, California – geologic summary and road log: *in* Cox, B.F., ed., Basin analysis and paleontology of the Paleocene and Eocene Goler Formation, El Paso Mountains, California: SEPM Book 57, p. 1-29.

Creely, Scott, and Force, E.R., 2007, Type region of the Ione Formation (Eocene), central California: stratigraphy, paleogeography, and relation to the Auriferous Gravels: USGS Open File Report 2006-1378, 65 p.

Croskell, M.S., and Collins, G.C., 2002, Formation of the Double K/T boundary layer in North America: 33rd Annual Lunar and Planetary Science Conference, abstract no. 1103, 2 p.

Crowell, J.C., and Suzuki, T., 1959, Eocene Stratigraphy paleontology, Orocopia Mountains, southeastern California: Geological Society of America Bulletin, v. 70, p. 581-592.

D'Hondt, Steven, Pilson, M.E., Sigurdson, H., Hanson A.K., and Carey, S., 1994, Surface-water acidification and extinction at the Cretaceous-Tertiary boundary: Geology, v. 22, p. 983-986.

Dibblee, T.W., 1952, Geology of the Saltdale Quadrangle, California: California Division of Mines Bulletin 160, p. 8-66, 3 Plates.

Engel, Rene, 1959, Geology of the Lake Elsinore Quadrangle California: California Division of Mines Bulletin 146, p. 59-154, 7 Plates.

Engel, Rene, Gay, Thomas E., Jr., and Rogers, B.L., 1959, Mineral deposits of the Lake Elsinore Quadrangle California: California Division of Mines Bulletin 146, p. 9-58, 3 Plates.

Evans, N.J., Gregoire, D.C., Goodfellow, W.D., Miles, N., and Veizer, J., 1994, The Cretaceous-Tertiary fireball layer, ejecta layer and coal seam: Platinum-group element content and mineralogy of size fraction: *Meteoritics*, v. 29, p. 223-235.

Guangqing Chen, Tyburczy, J.A., and Aherns, T.J., 1994, Shock-induced devolatilization of Calcium Sulfate and implications for K-T extinctions: *Earth and Planetary Science Letters*, v. 128, p. 615-628.

[http://web.gps.caltech.edu/~sue/TJA_LindhurstLabWebsite/ListPublications/Papers_pdf/Seismo_1736.pdf ("If all sulfur returned to the earth's surface in the form of sulfuric acid, the mass of sulfuric acid rain would amount to 0.5 – 3.6 kg/m²." P. 626)]

Ingersoll, R.V., Pratt, M.J., Davos, P.M., Caracciolo, L., Day, P.J., Hayne, P.O., Petrizzo, D.A., Gingrich, D.A., Cavazza, W., Critelli, S., Diamond, D.S., Coffey, K.T., Stang, D.M., Reith, R.C., and Hendrix, E.D., 2014, Paleotectonics of a complex Miocene half graben formed above a detachment fault: the Diligencia Basin, Orocopia Mountains, southern California: *Lithosphere*, v. 6, no. 3, p. 157-176.

Kraus, Mary J., 1999, Paleosols in clastic sedimentary rocks: their geologic applications: *Earth Science Reviews*, v. 47, p. 41-70.

Kring, D.A., 2007, The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary Boundary: *Palaeogeography, Palaeoclimatology, Palaeoecology* v. 255, p. 4–21.

<http://www.elas-iet.com/EMD/Kring2007ChicxulubK-TReview.pdf>

Lyons, J.R., and Aherns T.J., 2002, Terrestrial acidification at the K/T boundary: High-Pressure Shock Compression of Solids V, L. Davison, Y. Horie, and T. Sekine, (eds.), p. 181-197, Springer-Verlag-New York, Inc. 2002.

http://web.gps.caltech.edu/~asimow/TJA_LindhurstLabWebsite/ListPublications/Papers_pdf/Seismo_2074.pdf

MacLeod, Kenneth G., Huber, Brian T., and Fullagar, Paul D., 2001, Evidence for a small (~0.000030) but resolvable increase in seawater ⁸⁷Sr/⁸⁶Sr ratios across the Cretaceous-Tertiary boundary: *Geology*, v. 29 no. 4, p. 303-306. <http://geology.gsapubs.org/content/29/4/303.abstract>

Martin, E.E., and Macdougall, J.D., 1991, Seawater Sr isotopes at the Cretaceous/Tertiary boundary: *Earth and Planetary Science Letters*, v. 104(2-4), p. 166-180.

<http://www.geoscienceworld.org/cgi/georef/1991046437>

Miller, R.V., and Busch, L.L., 2016, Evidence for reassignment of kaolinite- and quartz-rich strata of the basal Tertiary section in California to the lower Paleocene: *abstract*, GSA Cordilleran Section abstracts with program, v. 48, No. 4, A27-5.

Norris, R.D., Firth, J., Blusztajn, J.S., and Ravizza, G., 2000, Mass failure of the North Atlantic margin triggered by the Cretaceous-Paleogene bolide impact: *Geology*, v. 28, p. 1119–1122.

Peterson, G.L., and Abbott, P.L., 1973, Weathering of the pre-Eocene terrane along coastal southwestern California and northern Baja California: *in* Ross, A. and Dowlen, R. (eds.), Studies on the Geology and Geological Hazards of the Greater San Diego Area, California: San Diego Assoc. Geologists and Assoc. Engineering Geologists Field Trip Guidebook, p. 19-22.

Peterson, G.L., and Abbott, P.L., 1975, Paleocene age of lateritic paleosol, western San Diego County, California: *in* Ross, A. and Dowlen, R. (eds.), Studies on the Geology of Camp Pendleton and Western San Diego County, California: San Diego Assoc. Geologists Field Trip Guidebook, p. 60-64.

Pollastro, R.M., and Bohor, B.F., 1993, Origin and Clay-mineral genesis of the Cretaceous-Tertiary boundary unit, Western Interior of North America: *Clays and Clay Minerals* v. 41, no. 1, p. 7-25.

Retallack, Greg, 1981, Fossil soils: indicators of ancient terrestrial environments, *in* Paleobotany, Paleoecology and Evolution, Niklas, K.J. (editor), v. 1, pp. 55-102; Praeger Publishers, New York.

Schoellhamer, J.E., Vedder, J.G., Yerkes, R.F., and Kinney, D.M., 1981, Geology of the northern Santa Ana Mountains, California, USGS Professional Paper 420-D, 109 pages, 4 plates.

<http://pubs.er.usgs.gov/publication/pp420D>

Saul, L.R., 1983, Notes on Paleogene turritellas, venericardias, and molluscan stages of the Simi Valley area, California: *in* Squires, R.R. and Filewicz, M.V., eds., 1983, Cenozoic Geology of the Simi Valley Area, Southern California, Pacific Section, S.E.P.M., Fall Field Trip Volume and Guidebook, p. 71-80. <http://decapoda.nhm.org/pdfs/33526/33526.pdf>

Smit, J., 1999, The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta: Annual Review of Earth and Planetary Sciences, v. 27, p. 75-113.

Squires, R.L., and Advocate, D.M., 1986, New early Eocene mollusk from the Orocopia Mountains, southern California: *Journal of Paleontology*, v. 60, p. 851-864.

Sutherland, J. Clark, 1935, Geological investigation of the clays of Riverside and Orange counties, southern California: *California Journal of Mines and Geology*-31st Report of the State Mineralogist, p. 51-87, 1 Plate.

Yancey, T.E., 1997, Tsunamites and bolide impact: Cretaceous-Tertiary boundary deposits, northern shelf of the Gulf of Mexico: *Geological Society of America Abstracts with Programs*, v. 29, no. 6, p. A142.