Bedrock Depth Determination and Mapping by Characterizing Shear Wave Velocity and Fundamental Resonance of the Glacial Drift Surface Layer at a Site in NE Ohio

James P Gonsiewski and Ernest C Hauser
Wright State University, Dayton, OH

Abstract

An experiment was conducted at a location of variable thickness glacial drift southeast of Clinton, Ohio, where an extensive earlier dataset of 3-component passive seismic data was available. The goal was to examine the relationship \(f_0 = \frac{V_s}{h} \) between the fundamental resonant frequency \(f_0 \) of the drift surface layer, its shear wave velocity \(V_s \) and thickness \(h \), and attempt to produce maps of bedrock depth and bedrock topography for the area. Three sites were examined with MASW and shear wave refraction surveys to independently determine the local drift Vs and depth to bedrock for comparison with local well data and the \(f_0 \) determined from 3-component passive seismic data at each site. The surveys indicate that the variation of the average Vs of the glacial drift of the three sites is approximately 10% of the mean despite a bedrock depth variation of over 100% of the mean. A theoretical \(f_0 \) calculated at the three survey sites, using the local average drill Vs and depth to bedrock, compared well with the HV peak spectral frequency \(f_0 \) determined using the associated 3-component seismometer data. However, the average Vs determined using MASW, rather than the shear wave refraction survey, appeared to better model the bedrock depths using the \(f_0 \) determined from the 3-component passive data. As a result of these surveys an average Vs was deemed suitable to be used for all the several prior sites of 3-component seismometers in the area in order to produce drift thickness and bedrock topography maps. ArcGIS® was used to produce a drift thickness map using local water and gas well information. These maps include the depths calculated from the average Vs of the drift and the \(f_0 \) determined from the prior 3-component passive data. The bedrock depths calculated from the 3-component seismometer arrays correlate well with the major trends indicated by the surrounding water and gas wells. Final contour maps of bedrock depth and topography incorporated depth to bedrock both observed in the water and gas wells as well as that calculated from geophysical methods. This study demonstrates how studies of surface layer resonance can effectively map variations of bedrock depth and topography in an area of significant bedrock variability.

Objectives

- Conduct three shear wave velocity (Vs) surveys to determine an average Vs
- Assess Vs variability
- Validate the relationship; \(f_0 = \frac{V_s}{(4h)} \) (Mahajan et al., 2012)
- Use Vs and horizontal to vertical spectral ratio (HVSR) of 3-component seismometers to calculate bedrock depth at each and compare with local water and gas wells
- Produce isopach and bedrock topography maps

Methods

- Multi-channel analysis of surface waves (MASW) (Park, 2005)
 - Frequency and surface wave (phase) velocity measured at the surface indicate shear wave velocity and depth of propagation
 - Processed using SurfSeis®

- Shear wave refraction (Interpes Limited, 2010)
 - Refracted arrivals indicate the velocity of the refracting material
 - Crossover distance and time indicate the depth of the refraction
 - Processed using IXRefraX®

- Horizontal to vertical spectral ratio (HVSR) (Bonnefoy-Claudet et al., 2009)
 - Horizontal component amplitude of seismic motion is divided by the vertical component amplitude measured by a 3-component seismometer
 - Indicates the frequency for which the horizontal component is amplified most and provides a fundamental resonance estimate
 - Processed using Geopry (geopry.org)

Results

<table>
<thead>
<tr>
<th>Site #</th>
<th>MASW Vs (m/s)</th>
<th>MASW Depth (m)</th>
<th>Refraction Vs (m/s)</th>
<th>Refraction Depth (m)</th>
<th>Wall Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S106</td>
<td>431.04</td>
<td>9.84</td>
<td>278.10</td>
<td>5.80</td>
<td>5</td>
</tr>
<tr>
<td>S100</td>
<td>370.16</td>
<td>74.57</td>
<td>221.70</td>
<td>42.60</td>
<td>59</td>
</tr>
<tr>
<td>S109</td>
<td>458.11</td>
<td>13.20</td>
<td>229.90</td>
<td>7.10</td>
<td>5</td>
</tr>
<tr>
<td>Average</td>
<td>432.77</td>
<td>32.54</td>
<td>241.25</td>
<td>18.85</td>
<td>23</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>45.04</td>
<td>36.44</td>
<td>30.47</td>
<td>20.58</td>
<td>24</td>
</tr>
<tr>
<td>Percent</td>
<td>10.73%</td>
<td>111.99%</td>
<td>12.53%</td>
<td>109.29%</td>
<td>104%</td>
</tr>
</tbody>
</table>

Conclusions

- Shear wave velocity did not vary significantly
- The relationship; \(f_0 = \frac{V_s}{(4h)} \) is valid at this site
- For the closest comparison, MASW provided the best bedrock depth approximation
- Mapping bedrock is possible at sites where shear wave velocity can be determined and data from an array of 3-component seismometers are available

References

Acknowledgements

Many thanks go to Wright State University for providing equipment and funding, Spectraseis for providing 3-component seismometer data, and GSA for allowing us to present.